RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Developing Data Mining Techniques for Intruder Detection in Network Traffic

        Amar Agrawal,Sabah Mohammed,Jinan Fiaidhi 보안공학연구지원센터 2016 International Journal of Security and Its Applicat Vol.10 No.8

        In this paper we have proposed a hybrid intrusion detection system consisting of a misuse detection model based upon a Binary Tree of Classifiers as the first stage and an anomaly detection model based upon SVM Classifier as the second stage. The Binary Tree consists of several best known classifiers specialized in detecting specific attacks at a high level of accuracy. Combination of a Binary Tree and specialized classifiers will increase accuracy of the misuse detection model. The misuse detection model will detect only known attacks. In-order to detect unknown attacks, we have an anomaly detection model as the second stage. SVM has been used, since it’s the best known classifier for anomaly detection which will detect patterns that deviate from normal behavior. The proposed hybrid intrusion detection has been tested and evaluated using KDD Cup ’99, NSL-KDD and UNSW-NB15 dataset.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼