RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • 전기 분무를 이용한 광합성 세포가 포함된 알지네이트 입자 제작

        배종혁(Jong Hyuk Bae),배성재(Seoung Jai Bai),김영진(Young Jin Kim),심정원(Jeong won Shim) 대한기계학회 2019 대한기계학회 춘추학술대회 Vol.2019 No.11

        The electrospray process is one of the widely used methods for producing microcapsules containing various biomaterials such as cells and drugs. In this study, we developed and optimized electrospray technology to produce uniform hydrogel beads that encapsulate photosynthetic cells with nanomaterials such as single-walled carbon nanotubes. The morphology of the hydrogel beads was mainly influenced by the concentration of sodium alginate and the spraying voltage, and the size of the beads and the number of cells depended on the spraying voltage and flow rate. With optimal conditions, hydrogel beads can be made as small as 25 ㎛ containing only single chlorella cells. Chronocurrent measurements were performed on single chlorella cells to electrochemically characterize the hydrogel beads. The results of this study will provide new insights into preparing hydrogel beads to immobilize single cells.

      • KCI등재

        PEDOT 기상중합 원단을 이용한 멀티 레이어 압력 센서 개발

        임승주 ( Seung Ju Lim ),배종혁 ( Jong Hyuk Bae ),장성진 ( Jee Young Lim ),임지영 ( Keun Hae Park ),박근혜 ( Seong Jin Jang ),고재훈 ( Jae Hoon Ko ) 한국센서학회 2018 센서학회지 Vol.27 No.3

        Smart textile industries have been precipitously developed and extended to electronic textiles and wearable devices in recent years. In particular, owing to an increasingly aging society, the elderly healthcare field has been highlighted in the smart device industries, and pressure sensors can be utilized in various elderly healthcare products such as flooring, mattress, and vital-sign measuring devices. Furthermore, elderly healthcare products need to be more lightweight and flexible. To fulfill those needs, textile-based pressure sensors is considered to be an attractive solution. In this research, to apply a textile to the second layer using a pressure sensing device, a novel type of conductive textile was fabricated using vapor phase polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT). Vapor phase polymerization is suitable for preparing the conductive textile because the reaction can be controlled simply under various conditions and does not need high-temperature processing. The morphology of the obtained PEDOT-conductive textile was observed through the Field Emission Scanning Electron Microscope (FESEM). Moreover, the resistance was measured using an ohmmeter and was confirmed to be adjustable to various resistance ranges depending on the concentration of the oxidant solution and polymerization conditions. A 3-layer 81-point multi-pressure sensor was fabricated using the PEDOT-conductive textile prepared herein. A 3D-viewer program was developed to evaluate the sensitivity and multi-pressure recognition of the textile-based multi-pressure sensor. Finally, we confirmed the possibility that PEDOT-conductive textiles could be utilized by pressure sensors.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼