RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUS

        Analysis of vortex induced vibration frequency of super tall building based on wind tunnel tests of MDOF aero-elastic model

        Wang, Lei,Liang, Shuguo,Song, Jie,Wang, Shuliang Techno-Press 2015 Wind and Structures, An International Journal (WAS Vol.21 No.5

        To study the vibration frequency of super high-rise buildings in the process of vortex induced vibration (VIV), wind tunnel tests of multi-degree-of-freedom (MDOF) aero-elastic models were carried out to measure the vibration frequency of the system directly. The effects of structural damping, wind field category, mass density, reduced wind velocity ($V_r$), as well as VIV displacement on the VIV frequency were investigated systematically. It was found that the frequency drift phenomenon cannot be ignored when the building is very high and flexible. When $V_r$ is less than 8, the drift magnitude of the frequency is typically positive. When $V_r$ is close to the critical wind velocity of resonance, the frequency drift magnitude becomes negative and reaches a minimum at the critical wind velocity. When $V_r$ is larger than12, the frequency drift magnitude almost maintains a stable value that is slightly smaller than the fundamental frequency of the aero-elastic model. Furthermore, the vibration frequency does not lock in the vortex shedding frequency completely, and it can even be significantly modified by the vortex shedding frequency when the reduced wind velocity is close to 10.5.

      • KCI등재

        Analysis of vortex induced vibration frequency of super tall building based on wind tunnel tests of MDOF aero-elastic model

        Lei Wang,Shuguo Liang,Jie Song,Shuliang Wang 한국풍공학회 2015 Wind and Structures, An International Journal (WAS Vol.21 No.5

        To study the vibration frequency of super high-rise buildings in the process of vortex induced vibration (VIV), wind tunnel tests of multi-degree-of-freedom (MDOF) aero-elastic models were carried out to measure the vibration frequency of the system directly. The effects of structural damping, wind field category, mass density, reduced wind velocity (Vr), as well as VIV displacement on the VIV frequency were investigated systematically. It was found that the frequency drift phenomenon cannot be ignored when the building is very high and flexible. When Vr is less than 8, the drift magnitude of the frequency is typically positive. When Vr is close to the critical wind velocity of resonance, the frequency drift magnitude becomes negative and reaches a minimum at the critical wind velocity. When Vr is larger than12, the frequency drift magnitude almost maintains a stable value that is slightly smaller than the fundamental frequency of the aero-elastic model. Furthermore, the vibration frequency does not lock in the vortex shedding frequency completely, and it can even be significantly modified by the vortex shedding frequency when the reduced wind velocity is close to 10.5.

      • SCIESCOPUSKCI등재

        Active Frequency Drift Method for Islanding Detection Applied to Micro-inverter with Uncontrollable Reactive Power

        Kwak, Raeho,Lee, June-Hee,Lee, Kyo-Beum The Korean Institute of Power Electronics 2016 JOURNAL OF POWER ELECTRONICS Vol.16 No.5

        This paper proposes active frequency drift (AFD) as an anti-islanding method applied to micro-inverters with uncontrollable reactive power. When using ordinary inverter topologies, such as full bridge inverters in photovoltaic systems, the islanding phenomenon can be detected with reactive power-based methods, such as reactive power variation. However, when the inverter topology cannot control the reactive power, conventional anti-islanding methods with reactive power cannot be utilized. In this work, the topology used in this paper cannot control the reactive power. Thus, an anti-islanding method that can be used in topologies that cannot control the reactive power is proposed. The conventional anti-islanding method of the topology that cannot control reactive power is introduced and analyzed. Unlike the conventional AFD method, the proposed method extends a zero current interval every predetermined cycle. The proposed method offers certain advantages over conventional AFD methods, such as total harmonic distortion. The proposed method is validated through simulation and experiment.

      • KCI등재

        Active Frequency Drift Method for Islanding Detection Applied to Micro-inverter with Uncontrollable Reactive Power

        곽래호,이준희,이교범 전력전자학회 2016 JOURNAL OF POWER ELECTRONICS Vol.16 No.5

        This paper proposes active frequency drift (AFD) as an anti-islanding method applied to micro-inverters with uncontrollable reactive power. When using ordinary inverter topologies, such as full bridge inverters in photovoltaic systems, the islanding phenomenon can be detected with reactive power-based methods, such as reactive power variation. However, when the inverter topology cannot control the reactive power, conventional anti-islanding methods with reactive power cannot be utilized. In this work, the topology used in this paper cannot control the reactive power. Thus, an anti-islanding method that can be used in topologies that cannot control the reactive power is proposed. The conventional anti-islanding method of the topology that cannot control reactive power is introduced and analyzed. Unlike the conventional AFD method, the proposed method extends a zero current interval every predetermined cycle. The proposed method offers certain advantages over conventional AFD methods, such as total harmonic distortion. The proposed method is validated through simulation and experiment.

      • SCIESCOPUSKCI등재

        Active Frequency Drift Method for Islanding Detection Applied to Micro-inverter with Uncontrollable Reactive Power

        Raeho Kwak,June-Hee Lee,Kyo-Beum Lee 전력전자학회 2016 JOURNAL OF POWER ELECTRONICS Vol.16 No.5

        This paper proposes active frequency drift (AFD) as an anti-islanding method applied to micro-inverters with uncontrollable reactive power. When using ordinary inverter topologies, such as full bridge inverters in photovoltaic systems, the islanding phenomenon can be detected with reactive power-based methods, such as reactive power variation. However, when the inverter topology cannot control the reactive power, conventional anti-islanding methods with reactive power cannot be utilized. In this work, the topology used in this paper cannot control the reactive power. Thus, an anti-islanding method that can be used in topologies that cannot control the reactive power is proposed. The conventional anti-islanding method of the topology that cannot control reactive power is introduced and analyzed. Unlike the conventional AFD method, the proposed method extends a zero current interval every predetermined cycle. The proposed method offers certain advantages over conventional AFD methods, such as total harmonic distortion. The proposed method is validated through simulation and experiment.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼