RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        회전익비행체 다분야통합 최적설계 프레임워크 개발 및 KHP-SDM RMDO를 이용한 회전익비행체 개념설계

        최원(Won Choi),황유상(Yu-Sang Hwang),김철호(Cheol-Ho Kim),김상훈(Sang-Hun Kim),이동호(Dong-Ho Lee),박찬우(Chan-Woo Park) 한국항공우주학회 2009 韓國航空宇宙學會誌 Vol.37 No.7

        본 논문에서는 회전익 비행체 개발과정에서 사용되는 다양한 해석데이터를 관리하기 위한 KHP - SDM 시스템 개발 및 회전익 비행체 개념설계를 위한 다분야통합 최적설계 프레임워크 개발에 관해 기술하였다. KHP-SDM 시스템 상에 개발된 다분야 해석 모듈을 통합하고 KHP-SDM의 최적화 모듈을 적용하여 KHP-SDM RMDO 프레임워크를 구축하였다. KHP-SDM RMDO 프레임워크를 이용한 회전익 비행체 개념설계 결과 프레임워크가 성공적으로 구성되었음을 보여주었다. This paper dealt with the development of the Framework for Multidisciplinary Design Optimization for the rotorcraft design concept and the building proces of KHP(Korea Helicopter Project) - SDM(Simulation Data Management) system to manage various analysis data, which are used in the rotorcraft development phase. KHP-SDM RMDO(Rotorcraft Multidisciplinary Design Optimization) framework, which applied optimization modules of KHP-SDM and integrated the developed Multidisciplinary analysis modules, was constructed in the KHP-SDM. The results of the rotorcraft conceptual design using KHP-SDM RMDO showed that the framework was evaluated to be successfully constructed.

      • KCI등재

        다분야 통합 최적설계 프레임워크 구축방법 분석

        이호준(Ho-Jun Lee),이재우(Jae-Woo Lee),문창주(Chang-Joo Moon),김상호(Sang Ho Kim),이정욱(Jeong-Oog Lee) 한국항공우주학회 2008 韓國航空宇宙學會誌 Vol.36 No.10

        다분야 통합 최적설계(MDO) 프레임워크는 항공우주시스템의 설계에 고려해야 할 다양한 설계 분야의 통합적이고 동시적인 해석 및 설계 최적화를 위한 통합 환경으로 해석자원 및 최적화자원은 물론 CAD 툴과 DBMS 또한 통합해야하며 사용자편의환경을 제공해야한다. 또한 설계하고자 하는 대상 및 개발환경에 따라 프레임워크의 구축방법은 달라질 수 있다. 본 논문에서는 개발환경에 따라 단일 PC기반 프레임워크와 PLinda기반 프레임워크, 그리고 웹서비스 기반 프레임워크로 분류하여 이들을 비교 분석하였다. MDO(Multidisciplinary Design and Optimization) framework can be an integrated environment or a system, which is for synthetic and simultaneous analysis and design optimization in various design fields of aerospace systems. MDO framework has to efficiently use and integrate distributed resources such as various analysis codes, optimization codes, CAD tools, DBMS and etc. in heterogeneous environment, and to provide graphical and easy-to-use user interfaces. Also, its development method can be changed by design objects and development environment. In this paper, we classify MDO frameworks into three types according to the development environments: Single PC-based, PLinda-based and Web Services-based MDO framework. And, we compare and analyze these frameworks.

      • KCI등재

        적합직교분해법을 이용한 항공기 날개 스킨 복합재 샌드위치 구조의 다분야 최적화

        박찬우(Chanwoo Park),김영상(Young Sang Kim) 한국항공우주학회 2019 韓國航空宇宙學會誌 Vol.47 No.7

        MDO(Multi-disciplinary Optimization)를 위한 서로 다른 모델 간의 결합은 계산 프레임 워크의 복잡성을 크게 증가시키는 동시에 CPU 시간과 메모리 사용을 증가시킨다. 이러한 어려움을 극복하기 위해 POD(Proper Orthogonal Decomposition)와 RBF(Radial Basis Function)를 사용하여 복합 샌드위치 구조가 항공기 날개 스킨 재료로 사용될 때 복합재와 샌드위치 코어의 두께를 결정하는 최적화 문제의 해를 구했다. POD와 RBF를 사용하여 날개 형상과 하중 데이터에 대한 대리 모델을 만들었으며 대리 모델에 의해 얻어진 목적 함수 및 제약 함수 값을 사용하여 최적해를 구하였다. The coupling between different models for MDO (Multi-disciplinary Optimization) greatly increases the complexity of the computational framework, while at the same time increasing CPU time and memory usage. To overcome these difficulties, POD (Proper Orthogonal Decomposition) and RBF (Radial Basis Function) are used to solve the optimization problem of determining the thickness of composites and sandwich cores when composite sandwich structures are used as aircraft wing skin materials. POD and RBF are used to construct surrogate models for the wing shape and the load data. Optimization is performed using the objective function and constraint function values which are obtained from the surrogate models.

      • 고효율 EAV 프로펠러의 다분야 최적설계

        이슬기(S.G. Yi),권형일(H.I. Kwon),최성임(S.I. Choi),박부민(P.M. Park),강영석(Y.S. Kang) 한국전산유체공학회 2012 한국전산유체공학회 학술대회논문집 Vol.2012 No.5

        A multidisciplinary design optimization of EAV (Electric Aerial Vehicle) propeller is carried out to maximize the efficiency of propeller performance. An objective is to minimize torque/power while maintaining a thrust level of baseline configuration at a given RPM and thus to improve propeller efficiency. Structural safety is also calculated during the design process and is ensured to satisfy a safety margin. A high-fidelity CFD and FEM-based structures computation is employed for a design. To test the accuracy of the analysis tools, a wind-tunnel test is conducted for the baseline propeller blade at operating RPM and numerical prediction is validated against experiment data. A derivative-free multidisciplinary design methodology based on the Kriging approximation model is used to achieve the design goal of minimization of torque. Design variables are mostly related to the shape of the blade and include twist distribution at eight cross sections along the blade span as well as the planform shape of the blade around tip area. Design results demonstrate a reduction of torque by almost 5% at constant thrust. Safety margin is well satisfied for a new blade.

      • KCI등재

        다분야통합최적설계 방법론의 병렬처리 성능 분석

        안문열(Moon-Youl Ahn),이세정(Se J. Lee) 대한기계학회 2007 大韓機械學會論文集A Vol.31 No.12

        Multidisciplinary design optimization methodologies play an essential role in modern engineering design which involves many inter-related disciplines. These methodologies usually require very long computing time and design tasks are hard to finish within a specified design cycle time. Parallel processing can be effectively utilized to reduce the computing time. The research on the parallel computing performance of MDO methodologies has been just begun and developing. This study investigates performances of MDF, IDF, SAND and CO among MDO methodologies in view of parallel computing. Finally, the best out of four methodologies is suggested for parallel processing purpose.

      • KCI등재

        웹 서비스 기반 MDO 시스템

        이호준(Ho-Jun Lee),이재우(Jae-Woo Lee),이정욱(Jeong-Oog Lee) 한국항공우주학회 2007 韓國航空宇宙學會誌 Vol.35 No.12

        다분야 통합 최적설계(MDO)는 여러 설계분야가 복잡하게 얽혀서 설계가 진행되어야 하는 항공기나 우주발사체등의 설계에 매우 유용하게 적용되고 MDO 시스템은 다양한 설계 분야의 통합적이고 동시적인 해석 및 설계 최적화를 위한 통합 환경 또는 시스템이다. MDO 시스템은 이기종의 환경에서 분산되어있는 다양한 해석 코드 및 최적화 코드, CAD, DBMS, GUI등의 자원들을 통합하고 효율적으로 사용할 수 있어야하며 협업설계환경을 제공해야한다. 본 논문에서는 웹 서비스 기반의 글로버스 툴킷을 이용해 설계자원들을 통합하고 워크플로우, 에이전트 등의 자동화 기술을 이용해 유기적인 자동실행을 제공하며 웹 유저 인터페이스를 통해 협업설계환경을 제공하는 웹 서비스 기반 MDO 시스템의 구축방안을 제시한다. MDO(Multidisciplinary Design and Optimization) can be applied for design of complex systems such as aircraft and SLV(Space Launch Vehicle). MDO System can be an integrated environment or a system, which is for synthetic and instantaneous analysis and design optimization in various design fields. MDO System has to efficiently use and integrate distributed resources such as various analysis codes, optimization codes, CAD, DBMS, GUI, and etc. in heterogeneous environments. In this paper, we present Web Services-based MDO System that integrates resources for MDO using Globus Toolkit and provides organic autonomous execution using automation technique such as Workflow system and agent. And also, it provides collaborative design environment through web user interfaces.

      • 공통설계변수를 고려한 독립적하부시스템에 의한 다분야통합최적설계

        신정규(Jung-Kyu Shin),박경진(Gyung-Jin Park) 대한기계학회 2006 대한기계학회 춘추학술대회 Vol.2006 No.6

        Multidisciplinary design optimization based on independent subspaces (MDOIS) is a simple and practical method that can be applied to the practical engineering MDO problems. However, the current version of MDOIS does not handle the common design variables. A new version of MDOIS is proposed and named as MDOIS/2006. It is a two-level MDO method while the original MDOIS is a single-level method. At first, system analysis is performed to solve the coupling in the analysis. If the termination criteria are not satisfied, each discipline solves its own design problem. Each discipline in the lower level solves the problem with common design variables while they are constrained by equality constraints. In the upper level, the common design variables of related disciplines are determined by using the optimum sensitivity of the objective function. To validate MDOIS/2006, mathematical problems as well as NASA test bed problems are solved. The results are compared with those from other MDO methods.

      • PIDO 기술을 이용한 전륜 현가계의 다분야 통합 최적설계

        최병렬(Byung-Lyun Choi),이갑성(Gab-Seong Lee),최동훈(Dong-Hoon Choi),남찬혁(Chan-Hyuk Nam),김기훈(Gi-Hoon Kim) 한국자동차공학회 2010 한국자동차공학회 학술대회 및 전시회 Vol.2010 No.11

        In this research, a multidisciplinary design optimization of suspension system is executed using the process integration and design optimization technique. To obtain design requirements from multi-disciplines, such as weight, durability, crash, NVH, and K&C analysis, the shapes and thicknesses of front sub-frame are optimized. To define the shape design variables, a morphing technique is utilized. For maximizing the efficiency of multidisciplinary design optimization, we apply an approximate optimization technique and enhance the accuracy of approximate models with augment latin hypercube design sampling, which is one of practical additional design of experiments. We can understand the main effect of each performance using design sensitivity matrix after execution of design of experiments. The response surface method and kriging method are adaptively used. The thickness design variables are dealt as discrete variables so that we adopt an evolutionary algorithm as a discrete optimizer. We successfully obtain alternative designs using various design formulations changing the priorities of weight and fatigue life cycles.

      • 전륜 현가 장치 서브프레임의 근사모델 기반 다분야통합최적설계

        이갑성(Gabseong Lee),최병렬(Byung-Lyul Choi),최동훈(Dong-Hoon Choi),남찬혁(Chan-Hyuk Nam),김기훈(Gi-Hoon Kim) 한국자동차공학회 2011 한국자동차공학회 학술대회 및 전시회 Vol.2011 No.11

        Approximate multidisciplinary design optimization (MDO) for a suspension component of the vehicle front suspension was performed in this research. Shapes and thicknesses of the subframe were optimized to satisfy multi-disciplinary design requirements; weight, fatigue, crash, noise, vibration, and harshness (NVH), and kinematic and compliance (K&C). Analyses procedures of the performance disciplines were integrated and automated by using the process integration and design optimization (PIDO) technique, and the integrated and automated analyses environments enabled various types of analytic design methodologies for solving the MDO problem. We applied an approximate optimization technique which involves sequential sampling and metamodeling. Since the design variables for thicknesses should be dealt as discrete variables. The evolutionary algorithm is selected as optimization technique. From the result of approximate MDO, optimum shape and thicknesses of the subframe component were obtained. Moreover, the result of this research proved the usefulness and effectiveness of the proposed approach including approximate optimization. The proposed approach is expected to be successful for the structural and shape optimizations of similar design problems.

      • KCI등재

        다정밀도 해석기법을 이용한 무인항공기 다분야통합 최적설계

        이재우(Jae-woo Lee),최석민(Seok-min Choi),누엔반(Nguyen Nhu Van),김지민(Jimin Kim),변영환(Yung-Hwan Byun) 한국항공우주학회 2012 韓國航空宇宙學會誌 Vol.40 No.8

        본 연구에서는 개념설계 단계에서의 해석 결과의 정확도를 높이기 위한 다정밀도 해석과 모든 분야의 요구도를 만족하기 위한 다분야통합 설계 최적화 기법을 적용하였다. 무인항공기의 해석을 위하여 경험식 기반의 저정밀도 해석도구들이 초기 사이징, 공력, 추진, 임무, 중량, 성능, 안정성 도구들로 모듈화되어 개발 및 검증되었다. 개발된 해석도구를 이용하여 설계통합 프로그램을 구성하고, 설계의 정확도를 증가시키기 위하여 다정밀도 해석에 와류 격자법을 이용하였다. 다분야통합 설계 최적화를 위하여 MDF 기법이 적용되었다. 또한 최적화 도구로는 구배기반 최적화 기법을 적용하였다. 제시한 방법의 타당성을 밝히기 위하여, 저정밀도 해석만을 적용한 방법과 다정밀도 해석을 적용한 두 가지 방법의 최적화 결과를 비교하여 본 연구에서 제안된 다정밀도 해석이 개념설계 단계에서 적용 가능함을 보였다. In this study, Multi-fidelity analysis is performed to improve the accuracy of analysis result during conceptual design stage. Multidisciplinary Design Optimization(MDO) method is also considered to satisfy the total system requirements. Low-fidelity analysis codes which are based on empirical equations are developed and validated for analyzing the Unmanned Aerial Vehicle(UAV) which have unconventional configurations. Analysis codes consist of initial sizing, aerodynamics, propulsion, mission, weight, performance, and stability modules. Design synthesis program which is composed of those modules is developed. To improve the accuracy of the design method for UAV, Vortex Lattice Method is used for the strategy of MFA. Multi-Disciplinary Feasible(MDF) method is used for MDO technique. To demonstrate the validity of presented method, the optimization results of both methods are compared. According to those results, the presented method is demonstrated to be applicable to improve the accuracy of the analyses during conceptual design stage.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼