RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        A Multidirectional Pendulum Kinetic Energy Harvester Based on Homopolar Repulsion for Low-Power Sensors in New Energy Driverless Buses

        Tingsheng Zhang,Minfeng Tang,Hai Li,Jingbo Li,Yingquan Zou,Yajia Pan,Zutao Zhang 한국정밀공학회 2022 International Journal of Precision Engineering and Vol.9 No.2

        There is a large amount of inertial kinetic energy wasted during the driving of new energy driverless buses. In this paper, a novel multidirectional pendulum kinetic energy harvester, based on homopolar repulsion, is designed for low-powered sensors in new-energy driverless buses. The proposed system consists of three main components: kinetic energy harvest module, energy conversion module and power storage module. The kinetic energy harvest module includes a multidirectional capture mechanism and a deformation amplification mechanism, which captures the acceleration direction of the vehicle, and harvests the inertial kinetic energy through the pendulum swinging respectively. In the energy conversion module, deformation of the piezoelectric beam generates electricity, due to homopolar repulsion from the magnets on the pendulum and piezoelectric beam. The power storage module stores electricity in supercapacitors to power the inertial measurement unit, acceleration sensor and other low-power sensors. The proposed system has completed simulation analysis and prototype tests, which show that the system featuring voltage of 13.6 V and power of 1.233 mW, illustrating the feasibility of self-powered applications in low-power sensors for new energy driverless buses.

      • KCI등재

        Additively manufactured nano-mechanical energy harvesting systems: advancements, potential applications, challenges and future perspectives

        Ahmed Ammar,Azam Ali,Wang Yanen,Zhang Zutao,Li Ning,Jia Changyuan,Mushtaq Ray Tahir,Rehman Mudassar,Gueye Thierno,Shahid Muhammad Bilal,Basit Ali Wajid 나노기술연구협의회 2021 Nano Convergence Vol.8 No.37

        Additively manufactured nano-MEH systems are widely used to harvest energy from renewable and sustainable energy sources such as wind, ocean, sunlight, raindrops, and ambient vibrations. A comprehensive study focusing on in-depth technology evolution, applications, problems, and future trends of specifically 3D printed nano-MEH systems with an energy point of view is rarely conducted. Therefore, this paper looks into the state-of-the-art technologies, energy harvesting sources/methods, performance, implementations, emerging applications, potential challenges, and future perspectives of additively manufactured nano-mechanical energy harvesting (3DP-NMEH) systems. The prevailing challenges concerning renewable energy harvesting capacities, optimal energy scavenging, power management, material functionalization, sustainable prototyping strategies, new materials, commercialization, and hybridization are discussed. A novel solution is proposed for renewable energy generation and medicinal purposes based on the sustainable utilization of recyclable municipal and medical waste generated during the COVID-19 pandemic. Finally, recommendations for future research are presented concerning the cutting-edge issues hurdling the optimal exploitation of renewable energy resources through NMEHs. China and the USA are the most significant leading forces in enhancing 3DP-NMEH technology, with more than 75% contributions collectively. The reported output energy capacities of additively manufactured nano-MEH systems were 0.5–32 mW, 0.0002–45.6 mW, and 0.3–4.67 mW for electromagnetic, piezoelectric, and triboelectric nanogenerators, respectively. The optimal strategies and techniques to enhance these energy capacities are compiled in this paper. Graphical Abstract

      • KCI등재

        A Hybrid Self-Powered System Based on Wind Energy Harvesting for Low-Power Sensors on Canyon Bridges

        Hao Cao,Xiaoping Wu,Hao Wu,Yajia Pan,Dabing Luo,Ali Azam,Zutao Zhang 한국정밀공학회 2023 International Journal of Precision Engineering and Vol.10 No.1

        Canyon cross wind has great potential to be transformed into electricity to power for low-power sensors of the health monitoring devices in bridge field. In this paper, a hybrid wind energy harvesting system (WEHS), integrating piezoelectric and electromagnetic mechanisms, is proposed to supply power for low-power sensors on canyon bridges. Firstly, the S-rotor embedded with a one-way bearing converts wind energy into rotational mechanical energy. Then, the piezoelectric cantilever beam and coils simultaneously convert mechanical energy into electricity under the excitation of the rotational magnet array. For the piezoelectric transducer, the symmetrical poles arrangement of tip magnet reduces the starting wind speed and resistance torque during energy harvesting. In addition, the relationship between different number of excitation magnets and the output of the piezoelectric transducer is explored. Finally, the output electricity is stored in the capacitors to supply power for low power sensors. The experimental results showed that the symmetrical poles arrangement of tip magnet could effectively reduce the starting resistance torque and improve the output power at low wind speeds. Given a wind speed of 6.5 m/s, the maximum output power of the WEHS can reach 19.24 mW with corresponding electrical energy of 75.714 mJ in one sweep period (6 s). The field test results demonstrated that the WEHS could effectively charge for the capacitors and power for a hundred LEDs. Furthermore, the mechanical durability and stability of the WEHS are verified by introducing a self-powered low power sensor system.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼