RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Clinical report and genetic analysis of a novel variant in ZMIZ1 causing neurodevelopmental disorder with dysmorphic factors and distal skeletal anomalies in a Chinese family

        He Liting,Wang Yao,Pan Jiahua,Guo Limin,Zhou Haoquan,Zhang Lan 한국유전학회 2024 Genes & Genomics Vol.46 No.4

        Background Neurodevelopmental disorder with dysmorphic factors and distal skeletal anomalies (NEDDFSA) is a rare and phenotypically variable disorder. The zinc finger MIZ-type containing 1 gene (ZMIZ1) is a causative gene of NEDDFSA that encodes a protein inhibitor of the activated STAT-like family transcriptional regulator. Given the rarity of reported NEDDFSA cases, new phenotypes and genotypes of this disorder are still being discovered. Objective This study describes the phenotype characteristics of a Chinese NEDDFSA family caused by a novel ZMIZ1 variant. Methods We reviewed the clinical phenotype of a Chinese patient with NEDDFSA and performed whole-exome sequencing (WES) of the patient’s family. We simulated the potential biological harmfulness of the mutant protein. Plasmids were constructed and used for western blot and immunofluorescence assays to analyze protein expression levels. Results The patient was a 6-month-old male infant who exhibited dysmorphic facial features, neurodevelopmental abnormalities, congenital heart disease, and previously unreported genitourinary system anomalies. WES revealed a non-frameshift deletion variant in ZMIZ1 (NM_020338.4: c.858_875del, p.Val288_Ala293del), resulting in a structural alteration in the protein’s alanine-rich domain. Western blot and immunofluorescence assays indicated a significant decrease in the expression level of the mutant ZMIZ1 protein compared to the wild-type protein. Conclusion The clinical manifestations of this patient may be associated with the ZMIZ1 variant, and the structural alteration in the alanine-rich domain of the ZMIZ1 protein may contribute to a more complex disease phenotype. These results expand the genotype–phenotype correlation of ZMIZ1. Background Neurodevelopmental disorder with dysmorphic factors and distal skeletal anomalies (NEDDFSA) is a rare and phenotypically variable disorder. The zinc finger MIZ-type containing 1 gene (ZMIZ1) is a causative gene of NEDDFSA that encodes a protein inhibitor of the activated STAT-like family transcriptional regulator. Given the rarity of reported NEDDFSA cases, new phenotypes and genotypes of this disorder are still being discovered. Objective This study describes the phenotype characteristics of a Chinese NEDDFSA family caused by a novel ZMIZ1 variant. Methods We reviewed the clinical phenotype of a Chinese patient with NEDDFSA and performed whole-exome sequencing (WES) of the patient’s family. We simulated the potential biological harmfulness of the mutant protein. Plasmids were constructed and used for western blot and immunofluorescence assays to analyze protein expression levels. Results The patient was a 6-month-old male infant who exhibited dysmorphic facial features, neurodevelopmental abnormalities, congenital heart disease, and previously unreported genitourinary system anomalies. WES revealed a non-frameshift deletion variant in ZMIZ1 (NM_020338.4: c.858_875del, p.Val288_Ala293del), resulting in a structural alteration in the protein’s alanine-rich domain. Western blot and immunofluorescence assays indicated a significant decrease in the expression level of the mutant ZMIZ1 protein compared to the wild-type protein. Conclusion The clinical manifestations of this patient may be associated with the ZMIZ1 variant, and the structural alteration in the alanine-rich domain of the ZMIZ1 protein may contribute to a more complex disease phenotype. These results expand the genotype–phenotype correlation of ZMIZ1.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼