RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Control Method for Fault-Tolerant Active Power Filters

        Chenyu Zhang,Jianyong Zheng,Jun Mei,Kai Deng,Fuju Zhou 전력전자학회 2015 JOURNAL OF POWER ELECTRONICS Vol.15 No.3

        New direct and indirect current control methods for a fault-tolerant active power filter topology are presented in this paper. Since a three-phase four-switch topology has a phase bridge current which cannot be directly controlled, a hysteresis control method in the α-β plane which controls the three-phase current in the two-phase stationary coordinate system is proposed. The improved SVPWM algorithm is able to eliminate the operation of the trigonometric functions in the traditional algorithm by rotating the α-β coordinates and alternating the sequence of the output vectors, which in turn simplifies the algorithm and reduces the switching frequency. The selection of the DC-side reference voltage and DC-side capacitor equalization strategy are also discussed. Simulation and experiments demonstrate that the proposed control method is correct and feasible.

      • SCIESCOPUSKCI등재

        Control Method for Fault-Tolerant Active Power Filters

        Zhang, Chenyu,Zheng, Jianyong,Mei, Jun,Deng, Kai,Zhou, Fuju The Korean Institute of Power Electronics 2015 JOURNAL OF POWER ELECTRONICS Vol.15 No.3

        New direct and indirect current control methods for a fault-tolerant active power filter topology are presented in this paper. Since a three-phase four-switch topology has a phase bridge current which cannot be directly controlled, a hysteresis control method in the α-β plane which controls the three-phase current in the two-phase stationary coordinate system is proposed. The improved SVPWM algorithm is able to eliminate the operation of the trigonometric functions in the traditional algorithm by rotating the α-β coordinates and alternating the sequence of the output vectors, which in turn simplifies the algorithm and reduces the switching frequency. The selection of the DC-side reference voltage and DC-side capacitor equalization strategy are also discussed. Simulation and experiments demonstrate that the proposed control method is correct and feasible.

      • KCI등재

        Security Analysis of the PHOTON Lightweight Cryptosystem in the Wireless Body Area Network

        ( Wei Li ),( Linfeng Liao ),( Dawu Gu ),( Chenyu Ge ),( Zhiyong Gao ),( Zhihong Zhou ),( Zheng Guo ),( Ya Liu ),( Zhiqiang Liu ) 한국인터넷정보학회 2018 KSII Transactions on Internet and Information Syst Vol.12 No.1

        With the advancement and deployment of wireless communication techniques, wireless body area network (WBAN) has emerged as a promising approach for e-healthcare that collects the data of vital body parameters and movements for sensing and communicating wearable or implantable healthful related information. In order to avoid any possible rancorous attacks and resource abuse, employing lightweight ciphers is most effective to implement encryption, decryption, message authentication and digital signature for security of WBAN. As a typical lightweight cryptosystem with an extended sponge function framework, the PHOTON family is flexible to provide security for the RFID and other highly-constrained devices. In this paper, we propose a differential fault analysis to break three flavors of the PHOTON family successfully. The mathematical analysis and simulating experimental results show that 33, 69 and 86 random faults in average are required to recover each message input for PHOTON-80 /20/16, PHOTON-160/36/36 and PHOTON-224/32/32, respectively. It is the first result of breaking PHOTON with the differential fault analysis. It provides a new reference for the security analysis of the same structure of the lightweight hash functions in the WBAN.

      • KCI등재

        Security Analysis of the Whirlpool Hash Function in the Cloud of Things

        ( Wei Li ),( Zhiyong Gao ),( Dawu Gu ),( Chenyu Ge ),( Linfeng Liao ),( Zhihong Zhou ),( Ya Liu ),( Zhiqiang Liu ) 한국인터넷정보학회 2017 KSII Transactions on Internet and Information Syst Vol.11 No.1

        With the advancement and deployment of leading-edge telecommunication technologies for sensing and collecting, computing related information, Cloud of Things (CoTs) has emerged as a typical application platform that is envisioned to revolutionize the daily activities of human society, such as intelligent transportation, modern logistics, food safety, environmental monitoring, etc. To avoid any possible malicious attack and resource abuse, employing hash functions is widely recognized as one of the most effective approaches for CoTs to achieve message integrity and data authentication. The Whirlpool hash function has served as part of the joint ISO/IEC 10118-3 International Standard by the International Organization for Standardization (ISO) and the International Electrotechnical Commission (IEC). In this paper, we propose an effective differential fault analysis on Whirlpool in the byte-oriented random fault model. The mathematical analysis and experimental results show that 8 random faults on average are required to obtain the current 512-bit message input of whirlpool and the secret key of HMAC-Whirlpool. Our work demonstrates that Whirlpool and HMAC-Whirlpool are both vulnerable to the single byte differential fault analysis. It provides a new reference for the security analysis of the same structure of the hash functions in the CoTs.

      • KCI등재

        Potent antibacterial and antibiofilm activities of TICbf-14, a peptide with increased stability against trypsin

        Wang Liping,Liu Xiaoyun,Ye Xinyue,Zhou Chenyu,Zhao Wenxuan,Zhou Changlin,Ma Lingman 한국미생물학회 2022 The journal of microbiology Vol.60 No.1

        The poor stability of peptides against trypsin largely limits their development as potential antibacterial agents. Here, to obtain a peptide with increased trypsin stability and potent antibacterial activity, TICbf-14 derived from the cationic peptide Cbf-14 was designed by the addition of disulfide-bridged hendecapeptide (CWTKSIPPKPC) loop. Subsequently, the trypsin stability and antimicrobial and antibiofilm activities of this peptide were evaluated. The possible mechanisms underlying its mode of action were also clarified. The results showed that TICbf-14 exhibited elevated trypsin inhibitory activity and effectively mitigated lung histopathological damage in bacteria-infected mice by reducing the bacterial counts, further inhibiting the systemic dissemination of bacteria and host inflammation. Additionally, TICbf-14 significantly repressed bacterial swimming motility and notably inhibited biofilm formation. Considering the mode of action, we observed that TICbf-14 exhibited a potent membrane-disruptive mechanism, which was attributable to its destructive effect on ionic bridges between divalent cations and LPS of the bacterial membrane. Overall, TICbf-14, a bifunctional peptide with both antimicrobial and trypsin inhibitory activity, is highly likely to become an ideal candidate for drug development against bacteria.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼