RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        An Improved SPWM Strategy to Reduce Switching in Cascaded Multilevel Inverters

        Dong, Xiucheng,Yu, Xiaomei,Yuan, Zhiwen,Xia, Yankun,Li, Yu The Korean Institute of Power Electronics 2016 JOURNAL OF POWER ELECTRONICS Vol.16 No.2

        The analysis of the switch status of each unit module of a cascaded multi-level inverter reveals that the working condition of the switch of a chopper arm causes unnecessary switching under the conventional unipolar sinusoidal pulse width modulation (SPWM). With an increase in the number of cascaded multilevel inverters, the superposition of unnecessary switching gradually occurs. In this work, we propose an improved SPWM strategy to reduce switching in cascaded multilevel inverters. Specifically, we analyze the switch state of the switch tube of a chopper arm of an H-bridge unit. The redundant switch is then removed, thereby reducing the switching frequency. Unlike the conventional unipolar SPWM technique, the improved SPWM method greatly reduces switching without altering the output quality of inverters. The conventional unipolar SPWM technique and the proposed method are applied to a five-level inverter. Simulation results show the superiority of the proposed strategy. Finally, a prototype is built in the laboratory. Experimental results verify the correctness of the proposed modulation strategy.

      • KCI등재

        An Improved SPWM Strategy to Reduce Switching in Cascaded Multilevel Inverters

        Xiucheng Dong,Xiaomei Yu,Zhiwen Yuan,Yankun Xia,Yu Li 전력전자학회 2016 JOURNAL OF POWER ELECTRONICS Vol.16 No.2

        The analysis of the switch status of each unit module of a cascaded multi-level inverter reveals that the working condition of the switch of a chopper arm causes unnecessary switching under the conventional unipolar sinusoidal pulse width modulation (SPWM). With an increase in the number of cascaded multilevel inverters, the superposition of unnecessary switching gradually occurs. In this work, we propose an improved SPWM strategy to reduce switching in cascaded multilevel inverters. Specifically, we analyze the switch state of the switch tube of a chopper arm of an H-bridge unit. The redundant switch is then removed, thereby reducing the switching frequency. Unlike the conventional unipolar SPWM technique, the improved SPWM method greatly reduces switching without altering the output quality of inverters. The conventional unipolar SPWM technique and the proposed method are applied to a five-level inverter. Simulation results show the superiority of the proposed strategy. Finally, a prototype is built in the laboratory. Experimental results verify the correctness of the proposed modulation strategy.

      • KCI등재

        Experimental Study on Dynamic Tensile Properties of Macro-Polypropylene Fiber Reinforced Cementitious Composites

        Guoliang Yang,Jingjiu Bi,Zhiwen Dong,Ying Li,Yi Liu 한국콘크리트학회 2023 International Journal of Concrete Structures and M Vol.17 No.1

        Using a high-speed photography system and a split Hopkinson pressure bar, macro-polypropylene fiber reinforced cementitious composites are tested to reveal the effects of the macro-polypropylene fiber volume fraction and loading rate on the dynamic tensile strength and failure mode. We also analyze the functional relationship between the dynamic tensile strength, loading rate, and fiber volume fraction, and study the splitting failure process using digital image correlation technology. The evolution law of the strain and displacement fields of the specimens is obtained, and the effect of the fiber volume fraction on the crack initiation strain value is quantitatively studied. The results show that the appropriate fiber content (1.5–2%) can significantly improve the dynamic tensile strength, while a higher fiber content (2.5%) leads to deterioration of the specimen. Adding macro-polypropylene fiber prevents the specimen from undergoing central tensile fracturing under dynamic loading, and distributes the impact load more evenly, thus improving the ability of the specimen to resist cracking.

      • KCI등재

        Coronal Three-Dimensional Magnetic Resonance Imaging for Improving Diagnostic Accuracy for Posterior Ligamentous Complex Disruption In a Goat Spine Injury Model

        Xuee Zhu,Jichen Wang,Dan Zhou,Chong Feng,Zhiwen Dong,Hanxiao Yu 대한영상의학회 2019 Korean Journal of Radiology Vol.20 No.4

        Objective: The purpose of this study was to investigate whether three-dimensional (3D) magnetic resonance imaging could improve diagnostic accuracy for suspected posterior ligamentous complex (PLC) disruption. Materials and Methods: We used 20 freshly harvested goat spine samples with 60 segments and intact surrounding soft tissue. The animals were aged 1–1.5 years and consisted of 8 males and 12 females, which were sexually mature but had not reached adult weights. We created a paraspinal contusion model by percutaneously injecting 10 mL saline into each side of the interspinous ligament (ISL). All segments underwent T2-weighted sagittal and coronal short inversion time inversion recovery (STIR) scans as well as coronal and sagittal 3D proton density-weighted spectrally selective inversion recovery (3D-PDW-SPIR) scans acquired at 1.5T. Following scanning, some ISLs were cut and then the segments were rescanned using the same magnetic resonance (MR) techniques. Two radiologists independently assessed the MR images, and the reliability of ISL tear interpretation was assessed using the kappa coefficient. The chi-square test was used to compare the diagnostic accuracy of images obtained using the different MR techniques. Results: The interobserver reliability for detecting ISL disruption was high for all imaging techniques (0.776–0.949). The sensitivity, specificity, and diagnostic accuracy of the coronal 3D-PDW-SPIR technique for detecting ISL tears were 100, 96.9, and 97.9%, respectively, which were significantly higher than those of the sagittal STIR (p = 0.000), coronal STIR (p = 0.000), and sagittal 3D-PDW-SPIR (p = 0.001) techniques. Conclusion: Compared to other MR methods, coronal 3D-PDW-SPIR provides a more accurate diagnosis of ISL disruption. Adding coronal 3D-PDW-SPIR to a routine MR protocol may help to identify PLC disruptions in cases with nearby contusion.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼