RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        A new analytical ICCE and force prediction model for wide-row machining of free-form surface

        Minglong Guo,Zhaocheng Wei,Jia Wang,Minjie Wang,Xiaoyu Wang,Shengxian Liu 대한기계학회 2023 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.37 No.1

        Cutting force is the most intuitive reflection of various influencing factors in the milling process, which is important for improving machining quality and efficiency. For the widerow milling with flat-end mill of free-form surface, an analytical in-cut cutting edge (ICCE) algorithm is studied in detail, and overall cutting force model is further constructed. The cutter location points along tool path are discretized into small oblique planes. Taking the oblique plane machining as the new object, the relative position of flat-end mill and workpiece in five-axis machining is defined parametrically. By constructing a semi-enclosed space in which the cutting edge participates in cutting, the ICCE is directly obtained. By analyzing the cutting force of oblique plane, the cutting force model of free-form surface can be established by spatial coordinate transformation. The simulation and experiment have demonstrated the correctness and effectiveness of the proposed ICCE algorithm and force prediction model.

      • KCI등재

        Expression pattern of prohibitin, capping actin protein of muscle Z-line beta subunit and tektin-2 gene in Murrah buffalo sperm and its relationship with sperm motility

        Zhaocheng Xiong,Haihang Zhang,Ben Huang,Qingyou Liu,Yingqun Wang,Deshun Shi,Xiangping Li 아세아·태평양축산학회 2018 Animal Bioscience Vol.31 No.11

        Objective: The aim of the current study is to investigate the relationship between prohibitin (PHB), capping actin protein of muscle Z-line beta subunit (CAPZB), and tektin-2 (TEKT2) and sperm motility in Murrah buffalo. Methods: We collected the high-motility and low-motility semen samples, testis, ovary, muscle, kidney, liver, brain and pituitary from Murrah buffalo, and analysed the expression of PHB, CAPZB, and TEKT2 in mRNA (message RNA) and protein level. Results: Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) result showed that the expression of PHB was higher and CAPZB, TEKT2 were specifically expressed in testis as compared to the other 6 tissues, and that in testis, the expression of TEKT2 was higher than that of CAPZB and PHB. Immunohistochemistry test revealed that all three genes were located on the convoluted seminiferous tubule and enriched in spermatogenic cells. Both qRT-PCR and Western Blot results showed that the expression levels of PHB, CAPZB, and TEKT2 were significantly lower in the low-motility semen group compared to the high-motility semen group (p<0.05). Conclusion: The expression levels of PHB, CAPZB, and TEKT2 in Murrah buffalo sperm have a high positive correlation with sperm motility. And the three genes may be potential molecular markers for the decline of buffalo sperm motility.

      • Structured Compressive Sensing-Based Spatio-Temporal Joint Channel Estimation for FDD Massive MIMO

        Zhen Gao,Linglong Dai,Wei Dai,Byonghyo Shim,Zhaocheng Wang IEEE 2016 IEEE TRANSACTIONS ON COMMUNICATIONS Vol.64 No.2

        <P>Massive MIMO is a promising technique for future 5G communications due to its high spectrum and energy efficiency. To realize its potential performance gain, accurate channel estimation is essential. However, due to massive number of antennas at the base station (BS), the pilot overhead required by conventional channel estimation schemes will be unaffordable, especially for frequency division duplex (FDD) massive MIMO. To overcome this problem, we propose a structured compressive sensing (SCS)-based spatio-temporal joint channel estimation scheme to reduce the required pilot overhead, whereby the spatio-temporal common sparsity of delay-domain MIMO channels is leveraged. Particularly, we first propose the nonorthogonal pilots at the BS under the framework of CS theory to reduce the required pilot overhead. Then, an adaptive structured subspace pursuit (ASSP) algorithm at the user is proposed to jointly estimate channels associated with multiple OFDM symbols from the limited number of pilots, whereby the spatio-temporal common sparsity of MIMO channels is exploited to improve the channel estimation accuracy. Moreover, by exploiting the temporal channel correlation, we propose a space-time adaptive pilot scheme to further reduce the pilot overhead. Additionally, we discuss the proposed channel estimation scheme in multicell scenario. Simulation results demonstrate that the proposed scheme can accurately estimate channels with the reduced pilot overhead, and it is capable of approaching the optimal oracle least squares estimator.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼