RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Slab Reinforcement Contributions to Negative Moment Strength of Reinforced Concrete T-Beam with High Strength Steel at Exterior Beam-Column Joints

        Zhamilya Mamesh,Dilnura Sailauova,Dichuan Zhang,주현진,이득행,김종 한국콘크리트학회 2024 International Journal of Concrete Structures and M Vol.18 No.2

        Previous studies have revealed that the contribution of slab reinforcement to the T-beam flexural strength in negative moment regions are not negligible for the seismic capacity design. An effective slab width (i.e., effective width of flanged section) has been proposed, within which the slab reinforcement needs to be included in the calculation of the beam nominal flexural strength in negative moment regions. These studies mainly focused on the cases using normal-strength steel in moment resisting frames. However, recently high-strength steel has been widely used in reinforced concrete moment resisting frames in high seismic regions to avoid congestion near beam-column joints. The use of high-strength steel may affect the beam stiffness due to the fact that it will require less amount of reinforcement, and result in a different normal stress distribution compared to the case with normal-strength steel. Therefore, this paper investigates the slab reinforcement contribution to the flexural strength of the reinforced concrete T-beam designed with high-strength steel in negative moment regions at exterior beam-column joints, for which nonlinear pushover analyses were conducted. Beam reinforcement grade was considered as a primary parameter with several other design variables including slab thickness, height, and span length of the beam. Analytical results show that the use of high-strength steel can result in a wider effective slab width than the case of normal-strength steel for calculating the beam nominal flexural strength under the negative moment. Based on these results, new design equations were proposed.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼