RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Temperature characteristics of indentation rolling resistance of belt conveyor

        Lidong Zhou,Zengfa Wu,Yongchao Li,Huiqiang Yao,Yuan Liu,Yuan Yuan,Wenjun Meng,Liangliang Han,Xueqin Cao 대한기계학회 2023 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.37 No.8

        In order to study the influence of temperature on the indentation rolling resistance of belt conveyor, theoretical analysis, numerical simulation analysis and experimental study of conveyor belt indentation rolling resistance with temperature characteristics were carried out in this paper, and the influence rules of different factors on the indentation rolling resistance of belt conveyor were obtained. First, the three-component Maxwell model is chosen as the viscoelastic model for the conveyor belt rubber material, and the viscoelastic modulus function based on temperature effects is constructed from the DMA experimental data fitting. Second, we introduce the one-dimensional Winkler foundation model to derive a mathematical expression for the indentation rolling resistance based on temperature properties. Then, a mathematical model of the indentation rolling resistance of a conveyor belt with temperature characteristics is developed in MATLAB and numerical simulations are performed. Finally, using the existing experimental equipment to conduct experiments, the experimental results are compared with the numerical simulation result. The results show that the theoretical numerical simulation results of the indentation rolling resistance with temperature effect presented in this paper have a consistent change trend with the experimental results; at constant temperature and constant load, the indentation rolling resistance increases with increasing band velocity; at constant temperature and constant velocity, the indentation rolling resistance increases with increasing load; at constant load and speed, when the temperature is lower than 0 °C or higher than 25 °C, the rolling resistance increases with the increase of temperature, when the temperature is between 0 °C and 25 °C, the rolling resistance decreases gradually with the increase of temperature.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼