RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Polar poly(n‑butyl acrylate)‑g‑polyacrylonitrile elastomer with high temperature elasticity and healability as flexible electronic substrate

        Yuzhu Zheng,Deli Xu,Shiyou Tian,Manli Li,Wenwen Wang,Ke Liu 한국의류학회 2021 Fashion and Textiles Vol.8 No.1

        In this work, graft copolymer poly (n-butyl acrylate)-g-polyacrylonitrile with poly (n-butyl acrylate) as backbones and polyacrylonitrile as side chains (PnBA-g-PAN) was synthesized by macromonomer method and emulsion polymerization. The macromonomer was synthesized by atom transfer radical polymerization and end-group modification. The chemical structures and thermal properties of macromonomer and graft copolymer were investigated by FTIR, GPC, NMR and TGA, etc. The mechanical properties of graft copolymer elastomer was also measured by uniaxial tensile test. Rheological properties at different temperature and mechanical property demonstrated that graft copolymer elastomer possessed elasticity until 180 oC because of cyclization of cyano groups. Ag nanowires@PnBA-g-PAN composite elastomer was developed, and the resulted material exhibited autonomic healing property on account of segments’ flexibility and dynamic interaction between Ag nanowires (AgNWs) and cyano groups. This is a general method for generation of elastomer with high temperature elasticity and fast self-healing. The composite elastomer has potential application in flexible electronic conductor.

      • Development of Novel Photosensitizer Using the <i> Buddleja officinalis</i> Extract for Head and Neck Cancer

        Cho, Hyejoung,Zheng, Hui,Sun, Qiaochu,Shi, Shuhan,He, YuZhu,Ahn, Kyuhyeon,Kim, Byunggook,Kim, Hye-Eun,Kim, Okjoon Hindawi 2018 Evidence-based Complementary and Alternative Medic Vol.2018 No.-

        <P>Photodynamic therapy (PDT) is generally safer and less invasive than conventional strategies for head and neck cancer treatment. However, currently available photosensitizers have low selectivity for tumor cells, and the burden and side effects are so great that research is needed to develop safe photosensitizers. In this study, it was confirmed that the<I> Buddleja officinalis</I> (BO) extract, used in the treatment of inflammation and vascular diseases, shows fluorescence when activated by LED light, and, based on this, we aimed to develop a new photosensitive agent suitable for PDT. MTT, Diff-Quick® staining, and DCF-DA were performed to measure the effects of treating head and neck cancer cells with BO extract and 625 nm LED light (BO-PDT). Cell cycle, TUNEL, and western blot assays, as well as acridine orange staining, were performed to explore the mechanism of BO-PDT-induced cell death. We found that when the BO extract was irradiated with 625 nm LED light, it showed sufficient fluorescence and stronger intracellular toxicity and ROS effect than the currently commercially available hematoporphyrin. BO-PDT resulted in a decrease of mTOR activity that was correlated with an increase in the levels of ATG5, beclin-1, and LC3-II, which interfere with the formation of autophagosomes. In addition, BO-PDT induced the activation of PARP and led to an increase in the expression of proapoptotic protein Bax and a decrease in the expression of the antiapoptotic protein Bcl-2. Moreover, BO-PDT has been shown to induce the autophagy pathway 4 h after treatment, while apoptosis was induced 16 h after treatment. Finally, we confirmed that BO-PDT caused cell death of head and neck cancer cells via the intrinsic pathway. Therefore, we suggest that BO extract can be used as a new photosensitizer in PDT of head and neck cancer.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼