RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Experimental Study on the Preparation of MA@PS@Fe3O4 Phase Change Microcapsules to Inhibit the Development of Electric Branches in Epoxy Resin Cured Compounds

        Liu Qian,Du Bin,Qi Wei,Mai Yuxiang,Zhao Yushun,Chen Nanqing 대한금속·재료학회 2022 ELECTRONIC MATERIALS LETTERS Vol.18 No.5

        Development of electric branches caused by partial discharge leads to degradation in the performance of epoxy resin insulation materials, which seriously threatens the safe and stable operation of power equipment. In this study, n-tetradecanol (MA)@polystyrene microsphere (PS)@Fe3O4 core–shell phase change microcapsules were designed and prepared. Doping 0.1 wt% phase change microcapsular material into the epoxy resin cured compound inhibited the development of electric branches. SEM and EDS tests showed that the phase-change microcapsules had monodisperse spherical core–shell structures with an MA encapsulation rate of 24.73% and excellent phase-change thermal storage capacity. Electric field simulations revealed that Fe3O4 nanoparticles in the microcapsule shell enhanced the local field strength of the cured epoxy resin and induced the development of electric branches toward the interior of the microcapsule. Moreover, doping of microcapsules into the epoxy resin significantly slowed the rate of temperature rise and thus inhibited further development of electric branches in epoxy resin cured products. In comparison with the epoxy resin cured without microcapsules, it was found that the longitudinal and transverse lengths of electric branches were reduced by 56.6% and 69.1%, respectively, in the epoxy resin cured with 0.1 wt% MA@PS@Fe3O4 microcapsules, and the electric branch initiation field strength was increased from 0.57 to 0.68 kV/mm. This indicated that MA@PS@Fe3O4 microcapsules significantly improved the electrical branch resistance of epoxy resin cured products, and this provides a new approach for extensive applications of epoxy resin insulation materials and safe and stable operation of power equipment.

      • KCI등재

        A Novel Self-Healing Polyurethane with High Transparency and Strength: Effects of Multiple Supermolecular Forces

        Yuan Liu,Yanmei Liao,Yintao Long,Yuxiang Qian,Shengqiang Nie,Yi Wang,Jia Zeng,Chunmei Zhang,Linbo Tian,Jun Luo 한국고분자학회 2022 폴리머 Vol.46 No.3

        It is a considerable challenge for expanding the applications of self-healing polyurethane because of the dilemma in balancing its mechanical and self-healing properties. Herein, a series of self-healing polyurethane systems (PUT-x) with short-range ordered rigid aromatic structures were synthesized by simply adjusting two kinds of diisocyanates, and by ingenious addition of aromatic chain extender. We hope to regulate the π-π interactions and further to manipulate the properties of obtained polyurethanes via adjusting the amount of the benzene rings in the molecular chains of the PUT-x systems. The PUT-5 with decent self-healing ability, optimal mechanical properties, acceptable thermal stability and favorable transparency was selected to incorporate liquid metal and fluorescent powder to fabricate conductive wire and anti-counterfeiting film. Significantly, the liquid metal could be recycled from the conductive wire conveniently without using strong acids or strong bases. Moreover, PUT-5 exemplarily withstood long-term soaking in normal saline, and no deformation could be identified.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼