RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Study on Axial Compression Behavior of Cross-Shaped and L-Shaped Multi-cavity Concrete-Filled Steel Tube Special Shaped Column

        Hongbo Li,Yufei Tong,Jianguang Yin,Hubiao Zhang,Changyu Yan 한국강구조학회 2022 International Journal of Steel Structures Vol.22 No.1

        Multi-cavity concrete-fi lled steel tube special shaped column (CFSTSSC) combines the excellent characteristics of multicavity steel tube and core concrete. CFSTSSC has the advantages of high bearing capacity, good ductility, and strong energy dissipation capacity. At present, accurate calculation methods for these kinds of structures are limited and research into crossshaped and L-shaped multi-cavity CFSTSSCs is not available. Therefore, the axial compression behavior of cross-shaped and L-shaped multi-cavity CFSTSSCs has been investigated, though experimental research and numerical simulation, in this study. First, axial compression tests were carried out on three cross-shaped and three L-shaped multi-cavity CFSTSSCs to analyze their failure modes, axial load-strain curve, ductility index, and ultimate bearing capacity. Then, fi nite element (FE) calculation models of cross-shaped and L-shaped multi-cavity CFSTSSCs were established. The FE models are in good agreement with the experimental results, which provides a foundation for further parameter analysis and failure mechanism study of special shaped columns. Finally, combining parameter analysis and limit equilibrium theory, equations for calculating the ultimate bearing capacity of cross-shaped and L-shaped multi-cavity CFSTSSCs were proposed. The results show that the error between the simplifi ed equation and the FE result is less than 15%, indicating that the equations can provide reference for practical engineering applications.

      • KCI등재

        Chemical Bonds-Conjugated Ag2SO3/NaNbO3 Hybrids as Efficient Photocatalysts: In-situ Fabrication, Characterization and Degradation of Rhodamine B and Methyl Orange

        Yanmei Feng,Zhiqiang Wang,Yunfeng Yang,Xiang-Feng Wu,Xiaodong Gong,Yajian Liu,Yufei Li,Zuo-Lin Cao,Chao Wang,Xin Tong 성균관대학교(자연과학캠퍼스) 성균나노과학기술원 2018 NANO Vol.13 No.7

        The Ag2SO3/NaNbO3 hybrids have been fabricated via a facile method at room temperature. Several methods such as X-ray diffraction, UV-Vis diffuse reflectance spectroscopy, scanning electron microscopy, electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy were used to characterize the samples. Moreover, the photocatalytic activity of the samples was assessed by degradation of rhodamine B and methyl orange under the visible light illumination. Experimental results indicated the photocatalytic degradation efficiency of the as-fabricated hybrids was first increased and then decreased with increasing the dosage of NaNbO3. When the molar ratio of Ag2SO3 to NaNbO3 was 1:0.7, the as-fabricated composites had the best photodegradation efficiency of 96.4% in 30 min for rhodamine B and 97.1% in 60 min for methyl orange, respectively. These were obviously higher than that of pure samples. Furthermore, Ag2SO3 was conjugated with NaNbO3 via chemical-bonds rather than physical contact. In addition, the possible photocatalytic degradation mechanism was also provided and the main roles during the process of photocatalytic degradation were played by holes.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼