RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Grub polypeptide extracts protect against oxidative stress through the NRF2-ARE signaling pathway

        Jingyang Chen,Yingjian Sun,Shan Huang,Hong Shen,Yongjie Chen 한국통합생물학회 2021 Animal cells and systems Vol.25 No.6

        Grub polypeptide extracts (GPEs) have antioxidant effects; however, their underlying molecular mechanisms are unknown. This study explored the antioxidant molecular mechanism of GPE via the nuclear factor-erythroid 2-related factor 2 (NRF2)-antioxidant response element (ARE) signaling pathway in C2C12 muscle satellite cells exposed to oxidative stress. The effects of GPE/or H2O2 on C2C12 were investigated by the MTT (3- (4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide) viability assay and immunofluorescence and small interfering RNA (siRNA) analyses. The cell viability, cell damage, intracellular reactive oxygen species (ROS) levels, and NRF2 signaling pathways related to proteins were measured. GPE significantly increased the antioxidant capacity of cells, evident by increased cell viability and decreased lactate dehydrogenase leakage, DNA damage, malondialdehyde content, and ROS level. GPE also markedly increased mRNA expression levels and activities of antioxidant enzymes including superoxidase 1 and 2, catalase, and glutathione peroxidase. In addition, GPE increased the gene and protein expression of NRF2 and heme oxygenase 1 by promoting NRF2 translocation from the cytoplasm to the nucleus and activating NRF2-ARE signaling pathways. The antioxidant effects of GPE through these signaling pathways were further confirmed by NRF2-specific siRNA silencing. Thus, GPE enhances antioxidant capacity and alleviates oxidative damage of C2C12 cells via the NRF2-ARE signaling pathway.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼