RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Honeypot game‐theoretical model for defending against APT attacks with limited resources in cyber‐physical systems

        Wen Tian,Xiaopeng Ji,Weiwei Liu,Jiangztao Zhai,Guangjie Liu,Yauwei Dai,Shuhua Huang 한국전자통신연구원 2019 ETRI Journal Vol.41 No.5

        A cyber‐physical system (CPS) is a new mechanism controlled or monitored by computer algorithms that intertwine physical and software components. Advanced persistent threats (APTs) represent stealthy, powerful, and well‐funded attacks against CPSs; they integrate physical processes and have recently become an active research area. Existing offensive and defensive processes for APTs in CPSs are usually modeled by incomplete information game theory. However, honeypots, which are effective security vulnerability defense mechanisms, have not been widely adopted or modeled for defense against APT attacks in CPSs. In this study, a honeypot game‐theoretical model considering both low‐ and high‐interaction modes is used to investigate the offensive and defensive interactions, so that defensive strategies against APTs can be optimized. In this model, human analysis and honeypot allocation costs are introduced as limited resources. We prove the existence of Bayesian Nash equilibrium strategies and obtain the optimal defensive strategy under limited resources. Finally, numerical simulations demonstrate that the proposed method is effective in obtaining the optimal defensive effect.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼