RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Fabrication of composite nanofiltration membranes with enhanced structural stability for concentrating oligomeric proanthocyanidins in ethanol aqueous solution

        Yanyan Ma,Yanlei Su,Yafei Li,Zhongyi Jiang 한국화학공학회 2015 Korean Journal of Chemical Engineering Vol.32 No.9

        Composite nanofiltration (NF) membranes with enhanced structural stability were fabricated and used to concentrate oligomeric proanthocyanidins (OPC) in ethanol solution. The composite NF membranes were prepared by interfacial polymerization of piperazine (PIP) with trimesoyl chloride (TMC), upon the porous supports of polyethersulfone (PES) and polyvinyl formal (PVF) blend membranes. The active layers of composite NF membranes were covalently linked to porous supports owing to hydroxyl groups of PVF upon support surface, which could participate in the interfacial polymerization reaction. The pure water fluxes of the composite NF membranes reached 34.9 L/m2h, while the rejections of Na2SO4 and orange GII were 92.7% and 98.4%, respectively. The enhanced structural stability of the composite NF membranes were confirmed by long-term immersion experiment in ethanol. NF concentration process was considered as a potential alternative to conventional evaporation concentration process for OPC concentration in ethanol solution.

      • KCI등재

        Improved performance of polyamide nanofiltration membranes by incorporating reduced glutathione during interfacial polymerization

        Zhiwei Jiao,Linjie Zhou,Mengyuan Wu,Kang Gao,Yanlei Su,Zhongyi Jiang 한국화학공학회 2018 Korean Journal of Chemical Engineering Vol.35 No.12

        Inspired by the specific amino acid sequence Asn-Pro-Ala (NPA) of water channel aquaporins (AQPs), we fabricated polyamide (PA) nanofiltration (NF) membranes by introducing reduced glutathione (GSH) in interfacial polymerization (IP) method. Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectrometry (XPS), scanning electron microscope (SEM), atomic force microscopy (AFM), zeta potential and static water contact angle measurement were employed to characterize the chemical composition, morphology, electronegativity and hydrophilicity of the NF membranes. The water flux of GSH/PIP-TMC NF membrane reached 32.00 L m2 h1 at 0.2MPa, which was approximately twice than that of pristine PIP-TMC NF membrane when the ratio of GHS to piperazidine (PIP) was 40% during IP process. More water channels were built as GSH was embedded into PA layer. The fabricated NF membranes also took on potent rejection for dyes and Na2SO4. This study presents a simple and facile method to simulate water channels-based biological materials which may find potential application in water treatment.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼