RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Creating Knowledge Graph of Electric Power Equipment Faults Based on BERT–BiLSTM–CRF Model

        Meng Fanqi,Yang Shuaisong,Wang Jingdong,Xia Lei,Liu Han 대한전기학회 2022 Journal of Electrical Engineering & Technology Vol.17 No.4

        Creating a large-scale knowledge graph of electric power equipment faults will facilitate the development of automatic fault diagnosis and intelligent question answering (QA) in the electric power industry. However, most existing methods have lower accuracy in Chinese entity recognition, thus it is hard to build such a high-quality knowledge graph by extracting knowledge from Chinese technical literature. To solve the problem, a novel model called BERT–BiLSTM–CRF is proposed. It blends Bi-directional Encoder Representation from Transformers (BERT), Bi-directional Long Short-Term Memory (BiLSTM), and Conditional Random Field (CRF). The model fi rstly identifi es and extracts electric power equipment entities from preprocessed Chinese technical literature. Then, the semantic relations between the entities are extracted based on the relation classifi cation method based on dependency parsing. Finally, the extracted knowledge is stored in the Neo4j database in the form of the triplet and visualized in the form of a graph. Through the above steps, a Chinese knowledge graph of electric power equipment faults can be built. The novelty of the model just lies in its subtle blend: the BERT module can not only learn phrase-level information representation, but also learn rich semantic information features; the CRF module realizes the constraint on the label prediction value and reduces the irregular recognition rate, so the accuracy rate of entity recognition is improved. Taking the Chinese technological literature, which is about fault diagnosis of electric power equipment as the experimental object, the experimental results show that the model identifi es and extracts Chinese entities more accurately than traditional methods. Thus, a comprehensive and accurate Chinese knowledge graph of electric power equipment faults could be constructed more easily.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼