RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Combined Phospholipase and Lipase Catalysis for Biodiesel Production from Phospholipids-containing Oil

        Yang Li,Yanfei Huang,Wei Du,Lingmei Dai,Dehua Liu 한국생물공학회 2015 Biotechnology and Bioprocess Engineering Vol.20 No.5

        Free lipase-mediated biodiesel production has been considered to be promising due to its advantages of high catalytic efficiency and lower preparation cost. Exploring the feasibility of free lipase to convert potential low quality oil feedstock into biodiesel is of great significance for further reducing the cost of biodiesel production. However, it is reported that low quality oils usually contain high concentration of phospholipids. Our previous study showed that the presence of high phospholipids content in oil feedstock would lead to poor catalytic performance of free lipase NS81006.Thereby, in order to improve the process, a combined catalysis together with phospholipase Lecitase Ultra and lipase NS81006 was developed in this paper. First, the effect of different factors involved in the process on Lecitase Ultra’s catalytic performance was investigated, then a two-step method via phospholipase-catalyzed phospholipids degradation followed by lipase-catalyzed methanolysis was further attempted to promote the conversion of phospholipids-containing oils for biodiesel production. When using oil containing 2,235 ppm initial phosphorus as feedstock, the final biodiesel yield could reach 96.4%, while the yield without phospholipase was only 76.6%. This work demonstrates that the combined catalysis of phospholipase and free lipase has a great prospect in biodiesel production from high phospholipids-containing oil feedstocks.

      • KCI등재

        Engineering tumor-specific catalytic nanosystem for NIR-II photothermal-augmented and synergistic starvation/chemodynamic nanotherapy

        Shuixiu Zhou,Jiahuan Xu,Yanfei Dai,Yan Wei,Liang Chen,Wei Feng,Yu Chen,Xuejun Ni 한국생체재료학회 2022 생체재료학회지 Vol.26 No.4

        Background: As an emerging therapeutic modality, chemodynamic therapy (CDT), converting hydrogen peroxide (H2O2) into highly toxic reactive oxygen species (ROS), has been developed for tumor-specific therapy. However, the deficiency of endogenous H2O2 and high concentration of glutathione (GSH) in the tumor microenvironment (TME) weaken the CDT-based tumor-therapeutic efficacy. Herein, a photothermal-enhanced tumor-specific cascade catalytic nanosystem has been constructed on the basis of glucose oxidase (GOD)-functionalized molybdenum (Mo)-based polyoxometalate (POM) nanoclusters, termed as GOD@POMs. Methods: GOD@POMs were synthesized by a facile one-pot procedure and covalently conjugation. Then, its structure was characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). In addition, ultraviolet-visiblenear-infrared (UV-vis-NIR) absorption spectrum and infrared thermal camera were applied to evaluate the catalytic and photothermal performance, respectively. Moreover, to confirm the therapeutic effects in vitro, cell counting kit-8 (CCK-8) assay, live/dead staining and ROS staining were performed. Furthermore, the biosafety of GOD@POMs was investigated via blood routine, blood biochemistry and hematoxylin and eosin (H&E) staining in Kunming mice. Besides, the C6 glioma tumor-bearing mice were constructed to evaluate its anti-tumor effects in vivo and its photoacoustic (PA) imaging capability. Notably, RNA sequencing, H&E, TdT-mediated dUTP nick end labeling (TUNEL) and Ki-67 staining were also conducted to disclose its underlying anti-tumor mechanism. Results: In this multifunctional nanosystem, GOD can effectively catalyze the oxidation of intratumoral glucose into gluconic acid and H2O2, achieving the cancer starvation therapy. Meanwhile, the generated gluconic acid decreases the pH in TME resulting in POM aggregation, which enables PA imaging-guided tumor-specific photothermal therapy (PTT), especially in the second near-infrared (NIR-II) biological window. Importantly, the Mo (VI) sites on POM can be reduced to Mo (V) active sites in accompany with GSH depletion, and then the post-produced Mo (V) transforms in situ overproduced H2O2 into singlet oxygen (1O2) via Russell mechanism, achieving self-enhanced CDT. Moreover, the PTT-triggered local tumor temperature elevation augments the synergistic nanocatalytic-therapeutic efficacy. Conclusions: Consequently, the integration of GOD-induced starvation therapy, H2O2 self-supply/GSH-depletion enhanced Mo-based CDT, and POM aggregation-mediated PTT endow the GOD@POMs with remarkable synergistic anticancer outcomes with neglectable adverse effects.

      • KCI등재

        Robust Gradient Iterative Estimation Algorithm for ExpARX Models With Random Missing Outputs

        Chuanjiang Li,Wei Dai,Ya Gu,Yanfei Zhu 제어·로봇·시스템학회 2024 International Journal of Control, Automation, and Vol.22 No.7

        This study presents a LookAhead-RAdam gradient iterative algorithm to identify ExpARX models with random missing outputs. The LookAhead-RAdam gradient iterative algorithm is used to optimize the step size of each element and adjust the direction to effectively update the ExpARX model parameter estimation through the estimated outputs. Compared to the classical gradient iterative algorithm, this study improves the estimation accuracy of the missing outputs and the parameter estimation convergence rate by introducing the LookAhead algorithm and RAdam algorithm. To validate the algorithm developed, a series of bench tests were conducted with computational experiments. Finally, the effectiveness of the proposed design approach is demonstrated by a simulation example.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼