RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Enhancement of Pyruvate Productivity in Candida glabrata by Deleting the CgADE13 Gene to Improve Acid Tolerance

        Xiulai Chen,Qiuling Luo,Jia Liu,Liming Liu 한국생물공학회 2018 Biotechnology and Bioprocess Engineering Vol.23 No.5

        Acid tolerance is one of the critical factors to evaluate the quality of the industrial production strains, especially organic acid producing microorganisms. To circumvent this problem, we investigated the physiological function of adenylosuccinate lyase in AMP metabolism from Candida glabrata by deleting the corresponding gene, CgADE13. At pH 4.0, CgADE13 deletion resulted in a 68.3% and 112.0% increase in biomass and cell viability compared to those of wild type strain (wt), respectively. In addition, CgADE13 deletion also protected cell morphology and counteracted ROS production. Further, the intracellular ATP level of strain Cgade13Δ was decreased by 25.0%, and its H+-ATPase activity was increased by 15.0%. Finally, pyruvate production with strain Cgade13Δ in a 30-L batch bioreactor at pH 4.0 reached 53.9 g/L, and pyruvate productivity was increased by 166.7% compared to that of wt. This is the first report regarding tolerance engineering of C. glabrata for enhancing pyruvate productivity, which provides a good starting point for metabolic engineering to achieve the industrial production of other chemicals.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼