RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        D-Galactose Induces a Mitochondrial Complex I Deficiency in Mouse Skeletal Muscle: Potential Benefits of Nutrient Combination in Ameliorating Muscle Impairment

        Liao Chang,Xin Liu,Jing Liu,Hua Li,Yanshen Yang,Jia Liu,Zihao Guo,Ke Xiao,Chen Zhang,Jiankang Liu,Xi Zhao-Wilson,Jiangang Long 한국식품영양과학회 2014 Journal of medicinal food Vol.17 No.3

        Accumulating research has shown that chronic D-galactose (D-gal) exposure induces symptoms similar to natural aging in animals. Therefore, rodents chronically exposed to D-gal are increasingly used as a model for aging and delay-of-aging pharmacological research. Mitochondrial dysfunction is thought to play a vital role in aging and age-related diseases; however, whether mitochondrial dysfunction plays a significant role in mice exposed to D-gal remains unknown. In the present study, we investigated cognitive dysfunction, locomotor activity, and mitochondrial dysfunction involved in D-gal exposure in mice. We found that D-gal exposure (125 mg/kg/day, 8 weeks) resulted in a serious impairment in grip strength in mice, whereas spatial memory and locomotor coordination remained intact. Interestingly, muscular mitochondrial complex I deficiency occurred in the skeletal muscle of mice exposed to D-gal. Mitochondrial ultrastructure abnormality was implicated as a contributing factor in D-gal-induced muscular impairment. Moreover, three combinations (A, B, and C) of nutrients applied in this study effectively reversed D-gal-induced muscular impairment. Nutrient formulas B and C were especially effective in reversing complex I dysfunction in both skeletal muscle and heart muscle. These findings suggest the following: (1) chronic exposure to D-gal first results in specific muscular impairment in mice, rather than causing general, premature aging; (2) poor skeletal muscle strength induced by D-gal might be due to the mitochondrial dysfunction caused by complex I deficiency; and (3) the nutrient complexes applied in the study attenuated the skeletal muscle impairment, most likely by improving mitochondrial function.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼