RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Artificial neural network reconstructs core power distribution

        Wenhuai Li,Peng Ding,Wenqing Xia,Shu Chen,Fengwan Yu,Chengjie Duan,Dawei Cui,Chen Chen 한국원자력학회 2022 Nuclear Engineering and Technology Vol.54 No.2

        To effectively monitor the variety of distributions of neutron flux, fuel power or temperatures in thereactor core, usually the ex-core and in-core neutron detectors are employed. The thermocouples fortemperature measurement are installed in the coolant inlet or outlet of the respective fuel assemblies. Itis necessary to reconstruct the measurement information of the whole reactor position. However, thereading of different types of detector in the core reflects different aspects of the 3D power distribution. The feasibility of reconstruction the core three-dimension power distribution by using different combinations of in-core, ex-core and thermocouples detectors is analyzed in this paper to synthesize theuseful information of various detectors. A comparison of multilayer perceptron (MLP) network and radialbasis function (RBF) network is performed. RBF results are more extreme precision but also moresensitivity to detector failure and uncertainty, compare to MLP networks. This is because that localizedneural network could offer conservative regression in RBF. Adding random disturbance in trainingdataset is helpful to reduce the influence of detector failure and uncertainty. Some convolution neuralnetworks seem to be helpful to get more accurate results by use more spatial layout information, thoughrelative researches are still under way

      • KCI등재

        The Chitin-Induced Chimeric LYK4-ER Gene Improves the Heat Tolerance of Arabidopsis at the Seedling Stage

        Linxiao Chen,Wei Xia,Jinxing Song,Mengqi Wu,Zhizhen Xu,Xiangyang Hu,Wenqing Zhang 한국식물학회 2020 Journal of Plant Biology Vol.63 No.4

        Due to global warming, high temperature has become the main abiotic stress affecting plant growth worldwide. LysM-containing receptor-like kinase 4 (LYK4) is the receptor for chitin, and ERECTA(ER) is a key factor in plant tolerance to high temperature. In this study, we constructed a chitin-induced chimeric LYK4-ER gene, in which the extracellular region and transmembrane domain of the LYK4 gene are fused with the intracellular region of the ER gene. Colony PCR, RT-PCR and western blot analyses of LYK4-ER transcription in plants, confirmed that the LYK4-ER gene was successfully constructed and transferred into Arabidopsis. The LYK4-ER gene localized to the cytomembrane and cytoplasm in vivo because of the binding properties of the transmembrane domain of the LYK4-ER gene to the cell membrane. The transgenic plants showed a higher germination rate and germination index as well as a shorter mean germination time than the wild-type plants, indicating that the LYK4-ER gene increases the heat tolerance of Arabidopsis. The lower H2O2 content and relative electrolytic leakage of the transgenic plants showed that the status of these plants under heat stress was improved. UPLC-MS/MS was used to analyze the phytohormones content, which suggested that the transgenic plants exhibited improved heat tolerance through jasmonic acid signal transduction pathways.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼