RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Dual-Crankshaft Out-of-Phase Balanced Drive Mechanism Applied to High-Frequency Scraping of High-Density Microcavities Patterns

        Shun-Tong Chen,Wei-Yu Jhou 한국정밀공학회 2021 International Journal of Precision Engineering and Vol.8 No.4

        This study examines the development of a “dual-crankshaft out-of-phase balanced drive mechanism” and its application in the realization of high-frequency scraping in the production of highly precise, extremely dense microconcavity patterns. The high-density microcavity mold can produce micro-lens arrays, which achieve energy saving through the light-gathering effect. A monocrystalline diamond tool driven by the designed positive drive mechanism facilitates scraping at a highfrequency using positively reciprocated motion. To inhibit system vibration caused by a single crankshaft, a dual-crankshaft out-of-phase balanced drive mechanism is developed, which allows both the primary drive shaft and balance shaft to possess identical eccentric distance with their eccentric forces going in opposite directions. The design off sets the eccentric force made by revolution of the primary drive shaft against the simultaneous force made by the revolving balance shaft. Experiments show that when system vibration error is restrained to 1-μm, the single crankshaft tool reaches a drive frequency of 15 Hz. While under the dual-crankshaft out-of-phase setup, drive frequency reached up to 50 Hz. Further experimental results demonstrated that the dual-crankshaft out-of-phase balanced drive mechanism has the capability of scraping a vast microconcavity pattern with high-precision, -integrity and -consistency. Characteristic surface roughness of microcavities was below Ra 0.024 μm and feature edges were burr-free. In addition, this paper discusses in detail: the material shear rate, scraping force prediction, influences of the workpiece forward feed-rate and tool actuation frequency as well as the relationship between major and minor axes in microconcavity formation.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼