http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
Pafitanis, Georgios,Vris, Alexandros,Reissis, Dimitris,Sadri, Amir,Alamouti, Reza,Myers, Simon,Sadigh, Parviz Korean Society of Plastic and Reconstructive Surge 2020 Archives of Plastic Surgery Vol.47 No.6
This article portrays the authors' clinical experience of a complex case of lower extremity reconstruction using a recycled pedicle from 10 years old free latissimus dorsi musculocutaneous flap to supply a new free anterolateral thigh flap for proximal tibia wound defect reconstruction. It provides clinical evidence that muscle neovascularization occurs and supports the dogma peripheral tissue neovascularization. This case stipulates that recycling of pedicle is feasible, when used with appropriate strategy and safety and also provides evidence for the long-term survival of greater saphenous vein grafts in lower extremity reconstruction.
Burton Harry,Iliadis Alexios Dimitrios,Jones Neil,Saini Aaron,Bystrzonowski Nicola,Vris Alexandros,Pafitanis Georgios 대한성형외과학회 2023 Archives of Plastic Surgery Vol.50 No.5
This article portrays the authors' experience with a complex lower limb bone and soft tissue defect, following chronic osteomyelitis and pathological fracture, which was managed by the multidisciplinary orthoplastic team. The decision for functional amputation versus limb salvage was deemed necessary, enhanced by the principles of “spare parts” in reconstructive microsurgery. This case describes the successful use of the osteocutaneous distal tibia turn-up fillet flap that allowed “lowering the level of the amputation” from a through knee to a below-knee amputation (BKA) to preserve the knee joint function. We comprehensibly review reports of turn-up flaps which effectively lower the level of amputation, also applying “spare-parts” surgery principles and explore how these concepts refine complex orthoplastic approaches when limb salvage is not possible to enhance function. The osteocutaneous distal tibia turn-up fillet flap is a robust technique for modified BKA reconstructions that provides sufficient bone length to achieve a tough, sensate stump and functional knee joint.