RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Catalytic Membrane Reactor for Dehydrogenation of Water Via gas-Shift: A Review of the Activities for the Fusion Reactor Fuel Cycle

        Tosti, Silvano,Rizzello, Claudio,Castelli, Stefano,Violante, Vittorio The Membrane Society of Korea 1999 Korean Membrane Journal Vol.1 No.1

        Pd-ceramic composite membranes and catalytic membrane reactors(CMR) have been studied for hydrogen and its isotopes (deuterium and tritium) purification and recovery in the fusion reactor fuel cycle. Particularly a closed-loop process has been studied for recovering tritium from tritiated water by means of a CMR in which the water gas shift reaction takes place. The development of the techniques for coating micro-porous ceramic tubes with Pd and Pd/Ag thin layers is described : P composite membranes have been produced by electroless deposition (Pd/Ag film of 10-20 $\mu$m) and rolling of thin metal sheets (Pd and Pd/Ag membranes of 50-70 $\mu$m). Experimental results of the electroless membranes have shown a not complete hydrogen selectivity because of the presence of some defects(micro-holes) in the metallic thin layer. Conversely the rolled thin Pd and Pd/ag membranes have separated hydrogen from the other gases with a complete selectivity giving rise to a slightly larger (about a factor 1.7) mass transfer resistance with respect to the electroless membranes. Experimental tests have confirmed the good performances of the rolled membranes in terms of chemical stability over several weeks of operation. Therefore these rolled membranes and CMR are adequate for applications in the fusion reactor fuel cycle as well as in the industrial processes where high pure hydrogen is required (i.e. hydrocarbon reforming for fuel cell)

      • Non-invasive estimation of relative pressure in turbulent flow using virtual work-energy

        Marlevi, David,Ha, Hojin,Dillon-Murphy, Desmond,Fernandes, Joao F.,Fovargue, Daniel,Colarieti-Tosti, Massimiliano,Larsson, Matilda,Lamata, Pablo,Figueroa, C. Alberto,Ebbers, Tino,Nordsletten, David A. Elsevier 2020 Medical image analysis Vol.60 No.-

        <P><B>Abstract</B></P> <P>Vascular pressure differences are established risk markers for a number of cardiovascular diseases. Relative pressures are, however, often driven by turbulence-induced flow fluctuations, where conventional non-invasive methods may yield inaccurate results. Recently, we proposed a novel method for non-turbulent flows, <I>ν</I>WERP, utilizing the concept of virtual work-energy to accurately probe relative pressure through complex branching vasculature. Here, we present an extension of this approach for turbulent flows: <I>ν</I>WERP-t. We present a theoretical method derivation based on flow covariance, quantifying the impact of flow fluctuations on relative pressure. <I>ν</I>WERP-t is tested on a set of <I>in-vitro</I> stenotic flow phantoms with data acquired by 4D flow MRI with six-directional flow encoding, as well as on a patient-specific <I>in-silico</I> model of an acute aortic dissection. Over all tests <I>ν</I>WERP-t shows improved accuracy over alternative energy-based approaches, with excellent recovery of estimated relative pressures. In particular, the use of a guaranteed divergence-free virtual field improves accuracy in cases where turbulent flows skew the apparent divergence of the acquired field. With the original <I>ν</I>WERP allowing for assessment of relative pressure into previously inaccessible vasculatures, the extended <I>ν</I>WERP-t further enlarges the method's clinical scope, underlining its potential as a novel tool for assessing relative pressure <I>in-vivo</I>.</P> <P><B>Highlights</B></P> <P> <UL> <LI> vWERP-t uses virtual work-energy to accurately assess turbulent relative pressure. </LI> <LI> In-vitro, vWERP-t shows 1:1 agreement with invasive measurements of relative pressure. </LI> <LI> In transient flow, vWERP-t shows significant improvement compared to other approaches. </LI> <LI> vWERP-t guarantees divergence free flow even in turbulent fields, improving accuracy. </LI> </UL> </P> <P><B>Graphical abstract</B></P> <P>[DISPLAY OMISSION]</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼