RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Optimal Sizing and Energy Management of Hybrid Energy Storage System for High-Speed Railway Traction Substation

        Tang Sida,Huang Xiaohong,Li Qunzhan,Yang Naiqi,Liao Qinyu,Sun Ke 대한전기학회 2021 Journal of Electrical Engineering & Technology Vol.16 No.3

        Traction power fl uctuations have economic and environmental eff ects on high-speed railway system (HSRS). The combination of energy storage system (ESS) and HSRS shows a promising potential for utilization of regenerative braking energy and peak shaving and valley fi lling. This paper studies a hybrid energy storage system (HESS) for traction substation (TS) which integrates super-capacitor (SC) and vanadium redox battery (VRB). According to the characteristics of the traction load under actual operating conditions, an energy management strategy with fi xed-period control (FPC) is proposed, which fully leverages the periodicity and regularity of HSRS operation. To achieve the optimal size, economic feasibility is selected as the optimization objective, which is fully assessed in terms of Net Present Value (NPV). The optimization constraints are formulated in which the Discrete Fourier Transform (DFT) is performed for power allocation between SC and VRB. Besides, an improved mutation-based particle swarm optimization (IMBPSO) is proposed to effi ciently solve the optimization and enhance convergence performance. Finally, combined with the measured traction load data, the eff ectiveness of the FPC energy management strategy is verifi ed and the optimal scale of the HESS is provided.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼