RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Prediction of gene expression and codon usage in human parasitic helminths

        Supriyo Chakraborty,Gulshana A. Mazumder,Arif Uddin 한국유전학회 2017 Genes & Genomics Vol.39 No.1

        Codon usage bias refers to the differences in the occurrence frequency of synonymous codons. To understand the patterns of codon usage in mitochondrial genes we used bioinformatic approaches to analyze the protein coding sequences of W. bancrofti and S. haematobium as no work was reported earlier. It was found that the ENC value ranged from 43 to 60 with a mean of 46.91 in W. bancrofti but varied from 49 to 60 with a mean of 45.17 in S. haematobium, respectively. In W. bancrofti a significant positive correlation was found between ENC and GC3% (r = 0.826**, p\0.01), but in S. haematobium significant correlation was found between ENC and GC3% (r = 0.983**, p\0.01). Principal component analysis suggests that the pattern of codon usage significantly differed between W. bancrofti and S. haematobium. Neutrality plot reveals that natural selection played a major role while mutation pressure played a minor role in codon usage pattern in the mitochondrial protein coding genes of W. bancrofti and S. haematobium. Various factors namely nucleotide composition, natural selection and mutation pressure affected the codon usage pattern.

      • SCIESCOPUSKCI등재

        Insights into the Usage of Nucleobase Triplets and Codon Context Pattern in Five Influenza A Virus Subtypes<sup>s</sup>

        ( Himangshu Deka ),( Supriyo Chakraborty ) 한국미생물 · 생명공학회 2016 Journal of microbiology and biotechnology Vol.26 No.11

        Influenza A virus is a single-stranded RNA virus with a genome of negative polarity. Owing to the antigenic diversity and cross concrete shift, an immense number of novel strains have developed astronomically over the years. The present work deals with the codon utilization partialness among five different influenza A viruses isolated from human hosts. All the subtypes showed the homogeneous pattern of nucleotide utilization with a little variation in their utilization frequencies. A lower bias in codon utilization was observed in all the subtypes as reflected by higher magnitudes of an efficacious number of codons. Dinucleotide analysis showed very low CpG utilization and a high predilection of A/T-ending codons. The H5N1 subtype showed noticeable deviation from the rest. Codon pair context analysis showed remarkable depletion of NNC-GNN and NNT-ANN contexts. The findings alluded towards GC-compositional partialness playing a vital role, which is reflected in the consequential positive correlation between the GC contents at different codon positions. Untangling the codon utilization profile would significantly contribute to identifying novel drug targets that will pacify the search for antivirals against this virus.

      • SCIESCOPUSKCI등재

        Compositional bias coupled with selection and mutation pressure drives codon usage in Brassica campestris genes

        Paul, Prosenjit,Malakar, Arup Kumar,Chakraborty, Supriyo 한국식품과학회 2018 Food Science and Biotechnology Vol.27 No.3

        The plant Brassica campestris includes the vegetables turnip and Chinese cabbage, important plants of economic importance. Here, we have analysed the codon usage bias of B. campestris for 116 protein coding genes. Neutrality analysis showed that B. campestris had a wide range of GC3s, and a significant correlation was observed between GC12 and GC3. Nc versus GC3s plot showed a few genes on or proximate to the expected curve, but the majority of points were found to be scattered distantly from the expected curve. Correspondence analysis on codon usage revealed that the position preference of codons on multidimensional space totally depends on the presence of A and T at synonymous third codon position. These results altogether suggest that composition bias along with selection (major) and mutation pressure (minor) affects the codon usage pattern of the protein coding genes in Brassica campestris.

      • KCI등재

        Compositional bias coupled with selection and mutation pressure drives codon usage in Brassica campestris genes

        Prosenjit Paul,Arup Kumar Malakar,Supriyo Chakraborty 한국식품과학회 2018 Food Science and Biotechnology Vol.27 No.3

        The plant Brassica campestris includes the vegetables turnip and Chinese cabbage, important plants of economic importance. Here, we have analysed the codon usage bias of B. campestris for 116 protein coding genes. Neutrality analysis showed that B. campestris had a wide range of GC3s, and a significant correlation was observed between GC12 and GC3. Nc versus GC3s plot showed a few genes on or proximate to the expected curve, but the majority of points were found to be scattered distantly from the expected curve. Correspondence analysis on codon usage revealed that the position preference of codons on multidimensional space totally depends on the presence of A and T at synonymous third codon position. These results altogether suggest that composition bias along with selection (major) and mutation pressure (minor) affects the codon usage pattern of the protein coding genes in Brassica campestris.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼