RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Modeling the Underwater Light Field Fluctuations in Coastal Oceanic Waters: Validation with Experimental Data

        Balasubramanian Sundarabalan,Palanisamy Shanmugam,안유환 한국해양과학기술원 2016 Ocean science journal Vol.51 No.1

        Modeling of the wave-induced underwater light fluctuations at near-surface depths in coastal oceanic waters is challenging because of the surface roughness and strong anisotropic effects of the light field. In the present work, a simple and computationally efficient radiative transfer model is used for the wind-driven sea surface for simulating underwater light fields such as downwelling irradiance (Ed), upwelling irradiance (Eu), and upwelling radiance (Lu) in a spatial domain. It is an extension of our previous work that essentially combines the air–sea interface of the wind-driven sea surface with transmittance and reflectance along with the diffuse and direct components of the homogenous and inhomogeneous water column. The present model simulates underwater light fields for any possible values of absorption and backscattering coefficients. To assess the performance of the model, the Ed, Eu, and Lu profiles predicted by the model are compared with experimental data from relatively clear and turbid coastal waters. Statistical results show significantly low mean relative differences regardless of the wavelength. Comparison of the simulated and in-situ time series data measured over rough sea surfaces demonstrates that model-observation agreement is good for the present model. The Hydrolight model when implemented with the modified bottom reflectance and phase function provides significantly better results than the original Hydrolight model without consideration of the bottom slope and vertically varying phase function. However, these results are non-spatial and have errors fluctuating at different wavelengths. To further demonstrate the efficiency of the present model, spatial distribution patterns of the underwater light fields are simulated based on the measured data from a coastal station for different solar zenith angles (under sunny condition). Simulated wave-induced fluctuations of the underwater lights fields show a good consistency with in-situ data for a few near-surface depths. The present model also provides a reasonable approximation for simulating wave-induced effects on the downward irradiance field and its anisotropic conditions caused by the surface roughness, wavelength and angle of incidence.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼