RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Genome‑wide mining of respiratory burst homologs and its expression in response to biotic and abiotic stresses in Triticum aestivum

        Sudhir Navathe,Sakshi Singh,Vinay Kumar Singh,Ramesh Chand,Vinod Kumar Mishra,Arun Kumar Joshi 한국유전학회 2019 Genes & Genomics Vol.41 No.9

        Background Membrane-bound NADPH oxidases (Nicotinamide adenine ainucleotide phosphate oxidase) also called respiratory burst oxidase homologs (Rboh) play an essential role in ROS production under normal as well as environmental stress conditions in plants. Objective To identify and study respiratory burst homologs (Rboh) from the wheat genome as well as characterize their role in various biological and molecular processes along with expression in response to biotic and abiotic stresses. Methods The Rboh homologs in the wheat genome were predicted based on data processing, alignment of sequences and phylogenetic analysis of sequences in numerous plant species and wheat. The conserved motifs were known followed by domain design study. The 3-D structure prediction and similarity modeling were administered for NADPH enzyme domain. Gene ontology and a functional study were done in addition to expression analysis of Triticum aestivum respiratory burst oxidase (TaRboh) gene family in response to biotic as well as abiotic stress. Results Phylogenetic analysis of Rboh gene family members among seven plant species including wheat, classified the family into four subfamilies. Rboh genes are mainly involved in various biological processes such as Response to oxidative stress, Superoxide anion generation, Hydrogen peroxide biosynthetic process. Among the molecular functions, calcium ion binding, peroxidase activity, oxidoreductase activity, superoxide-generating NADPH oxidase activity are essential. Enzyme annotation of the family and superfamily revealed that it encodes to five structural clusters and coding to enzymes NAD(P)H oxidase ( H2O2-forming) (EC:1.6.3.1), Ferric-chelate reductase (NADH) (EC: 1.16.1.7), Peroxidase (EC: 1.11.1.7), Ribose-phosphate diphosphokinase (EC: 2.7.6.1). The enzymes contain six membrane-spanning domains, two hemes, and conserved motifs associated with NADPH, EF-hand and FAD binding. The outcomes additionally reflect a distinct role of this enzyme in different molecular functions which are responsible for the stress signaling. Further, the transcripts of TaRboh found expressed in various plant parts such as stem, leaves, spike, seed, and roots. We also observed expression of these gene family members under drought/combination of drought + heat and important wheat pathogens such as Puccinia striformis, Blumeria graminis f.sp. tritici, Fusarium graminiarum, F. pseudograminiarum, and Zymoseptoria tritici. Conclusions The investigation demonstrated that identified respiratory burst homologs (Rboh) in T. aestivum were involved in pathogen activated ROS production and have regulatory functions in cell death and defense responses.

      • SCIEKCI등재

        Hydrogen Peroxide Prompted Lignification Affects Pathogenicity of Hemi-biotrophic Pathogen Bipolaris sorokiniana to Wheat

        Poudel, Ajit,Navathe, Sudhir,Chand, Ramesh,Mishra, Vinod K.,Singh, Pawan K.,Joshi, Arun K. The Korean Society of Plant Pathology 2019 Plant Pathology Journal Vol.35 No.4

        Spot blotch caused by Bipolaris sorokiniana has spread to more than 9 million ha of wheat in the warm, humid areas of the Eastern Gangetic Plains (EGP) of South Asia and is a disease of major concern in other similar wheat growing regions worldwide. Differential lignin content in resistant and susceptible genotypes and its association with free radicals such as hydrogen peroxide ($H_2O_2$), superoxide ($O_2{^-}$) and hydroxyl radical ($OH^-$) were studied after inoculation under field conditions for two consecutive years. $H_2O_2$ significantly influenced lignin content in flag leaves, whereas there was a negative correlation among lignin and $H_2O_2$ to the Area Under Disease Progress Curve (AUDPC). The production of $H_2O_2$ was higher in the resistant genotypes than susceptible ones. The $O_2{^-}$ and $OH^-$ positively correlated with AUDPC but negatively with lignin content. This study illustrates that $H_2O_2$ has a vital role in prompting lignification and thereby resistance to spot blotch in wheat. We used cluster analysis to separate the resistant and susceptible genotypes by phenotypic and biochemical traits. $H_2O_2$ associated lignin production significantly reduced the number of appressoria and penetration pegs. We visualized the effect of lignin in disease resistance using differential histochemical staining of tissue from resistant and susceptible genotypes, which shows the variable accumulation of hydrogen peroxide and lignin around penetration sites.

      • KCI등재

        Hydrogen Peroxide Prompted Lignification Affects Pathogenicity of Hemi-biotrophic Pathogen Bipolaris sorokiniana to Wheat

        Ajit Poudel,Sudhir Navathe,Ramesh Chand,Vinod K. Mishra,Pawan K. Singh,Arun K. Joshi 한국식물병리학회 2019 Plant Pathology Journal Vol.35 No.4

        Spot blotch caused by Bipolaris sorokiniana has spread to more than 9 million ha of wheat in the warm, humid areas of the Eastern Gangetic Plains (EGP) of South Asia and is a disease of major concern in other similar wheat growing regions worldwide. Differential lignin content in resistant and susceptible genotypes and its association with free radicals such as hydrogen peroxide (H2O2), superoxide (O2 -) and hydroxyl radical (OH-) were studied after inoculation under field conditions for two consecutive years. H2O2 significantly influenced lignin content in flag leaves, whereas there was a negative correlation among lignin and H2O2 to the Area Under Disease Progress Curve (AUDPC). The production of H2O2 was higher in the resistant genotypes than susceptible ones. The O2 - and OH- positively correlated with AUDPC but negatively with lignin content. This study illustrates that H2O2 has a vital role in prompting lignification and thereby resistance to spot blotch in wheat. We used cluster analysis to separate the resistant and susceptible genotypes by phenotypic and biochemical traits. H2O2 associated lignin production significantly reduced the number of appressoria and penetration pegs. We visualized the effect of lignin in disease resistance using differential histochemical staining of tissue from resistant and susceptible genotypes, which shows the variable accumulation of hydrogen peroxide and lignin around penetration sites.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼