http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
Janulewicz, K A,Kim, C M,Stiel, H Optical Society of America 2013 Optics express Vol.21 No.3
<P>It is shown that the statistics of the intensity distribution in the output beam of a collisional X-ray laser, analysed in terms of the degree of freedom or equivalently the number of the coherence modes in the beam cross-section, has non-Gaussian character. The non-Gaussian character seems to be caused by the small-scale plasma/medium fluctuations. It was assumed that these overlap the modal structure imposed by the geometry of the medium and considered as equivalent to a large-scale inhomogeneity. Thus, the fluctuations decide about the character of the output beam transverse coherence. It is also shown that the relevant to this model compound statistics of the intensity fluctuations in the output beam is well described by the m-m-distribution, a specific form of the K-distribution. The deviation from the Gaussian statistics was confirmed by the field correlation function at the laser exit plane, retrieved from the experimental data.</P>
Optimization of a laser plasma x-ray source for ultrafast x-ray absorption spectroscopy
Iqbal, M.,Ijaz, M.,Noh, D. Y.,Janulewicz, K. A.,Stiel, H.,Nickles, P. V. 한국물리학회 2017 THE JOURNAL OF THE KOREAN PHYSICAL SOCIETY Vol. No.
<P>We present optimization of laser plasma x-ray experimental conditions for ultrafast x-ray absorption spectroscopy measurements on broad range of transition metal oxides. First, the x-ray flux generated from a laser plasma source was optimized with an emphasis on the Bremsstrahlung by investigating the influence of the angle of the incidence of laser beam on a Cu tape target. The x-ray flux emitted in both the front and transmitted side of the target was found to be optimal at the incident angle of 15 similar to 25 degrees. Moreover the manipulation of the Bremsstrahlung peak energy by the laser focus distribution was discussed. In addition to the source optimization, we present a scheme to find the time-delay zero position in a pump-probe experiment together with a normalization scheme for x-ray source fluctuations. As a feasibility check, we present the transmitted spectra of two materials, Ni and NiO.</P>
Optimization of a Laser Plasma X-Ray Source for Ultrafast X-Ray Absorption Spectroscopy
Mazhar Iqbal,Muhammad Ijaz,Do Young Noh,Karol A. Janulewicz,Holger Stiel,Peter V. Nickles 한국물리학회 2017 THE JOURNAL OF THE KOREAN PHYSICAL SOCIETY Vol.70 No.10
We present optimization of laser plasma x-ray experimental conditions for ultrafast x-ray absorption spectroscopy measurements on broad range of transition metal oxides. First, the x-ray flux generated from a laser plasma source was optimized with an emphasis on the Bremsstrahlung by investigating the influence of the angle of the incidence of laser beam on a Cu tape target. The x-ray flux emitted in both the front and transmitted side of the target was found to be optimal at the incident angle of 15 25 degrees. Moreover the manipulation of the Bremsstrahlung peak energy by the laser focus distribution was discussed. In addition to the source optimization, we present a scheme to find the time-delay zero position in a pump-probe experiment together with a normalization scheme for x-ray source fluctuations. As a feasibility check, we present the transmitted spectra of two materials, Ni and NiO.