RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCOPUSKCI등재

        Insights Into Emissions and Exposures From Use of Industrial-Scale Additive Manufacturing Machines

        Stefaniak, A.B.,Johnson, A.R.,du Preez, S.,Hammond, D.R.,Wells, J.R.,Ham, J.E.,LeBouf, R.F.,Martin, S.B. Jr.,Duling, M.G.,Bowers, L.N.,Knepp, A.K.,de Beer, D.J.,du Plessis, J.L. Occupational Safety and Health Research Institute 2019 Safety and health at work Vol.10 No.2

        Background: Emerging reports suggest the potential for adverse health effects from exposure to emissions from some additive manufacturing (AM) processes. There is a paucity of real-world data on emissions from AM machines in industrial workplaces and personal exposures among AM operators. Methods: Airborne particle and organic chemical emissions and personal exposures were characterized using real-time and time-integrated sampling techniques in four manufacturing facilities using industrial-scale material extrusion and material jetting AM processes. Results: Using a condensation nuclei counter, number-based particle emission rates (ERs) (number/min) from material extrusion AM machines ranged from $4.1{\times}10^{10}$ (Ultem filament) to $2.2{\times}10^{11}$ [acrylonitrile butadiene styrene and polycarbonate filaments). For these same machines, total volatile organic compound ERs (${\mu}g/min$) ranged from $1.9{\times}10^4$ (acrylonitrile butadiene styrene and polycarbonate) to $9.4{\times}10^4$ (Ultem). For the material jetting machines, the number-based particle ER was higher when the lid was open ($2.3{\times}10^{10}number/min$) than when the lid was closed ($1.5-5.5{\times}10^9number/min$); total volatile organic compound ERs were similar regardless of the lid position. Low levels of acetone, benzene, toluene, and m,p-xylene were common to both AM processes. Carbonyl compounds were detected; however, none were specifically attributed to the AM processes. Personal exposures to metals (aluminum and iron) and eight volatile organic compounds were all below National Institute for Occupational Safety and Health (NIOSH)-recommended exposure levels. Conclusion: Industrial-scale AM machines using thermoplastics and resins released particles and organic vapors into workplace air. More research is needed to understand factors influencing real-world industrial-scale AM process emissions and exposures.

      • KCI등재

        Insights Into Emissions and Exposures From Use of Industrial-Scale Additive Manufacturing Machines

        A.B. Stefaniak,A.R. Johnson,S. du Preez,D.R. Hammond,J.R. Wells,J.E. Ham,R.F. LeBouf,S.B. Martin Jr.,M.G. Duling,L.N. Bowers,A.K. Knepp,D.J. de Beer,J.L. du Plessis 한국산업안전보건공단 산업안전보건연구원 2019 Safety and health at work Vol.10 No.2

        Background: Emerging reports suggest the potential for adverse health effects from exposure to emissions from some additive manufacturing (AM) processes. There is a paucity of real-world data on emissions from AM machines in industrial workplaces and personal exposures among AM operators. Methods: Airborne particle and organic chemical emissions and personal exposures were characterized using real-time and time-integrated sampling techniques in four manufacturing facilities using industrial-scale material extrusion and material jetting AM processes. Results: Using a condensation nuclei counter, number-based particle emission rates (ERs) (number/min) from material extrusion AM machines ranged from 4.1 1010 (Ultem filament) to 2.2 1011 [acrylonitrile butadiene styrene and polycarbonate filaments). For these same machines, total volatile organic compound ERs (mg/min) ranged from 1.9 104 (acrylonitrile butadiene styrene and polycarbonate) to 9.4 104 (Ultem). For the material jetting machines, the number-based particle ER was higher when the lid was open (2.3 1010 number/min) than when the lid was closed (1.5e5.5 109 number/min); total volatile organic compound ERs were similar regardless of the lid position. Low levels of acetone, benzene, toluene, and m,p-xylene were common to both AM processes. Carbonyl compounds were detected; however, none were specifically attributed to the AM processes. Personal exposures to metals (aluminum and iron) and eight volatile organic compounds were all below National Institute for Occupational Safety and Health (NIOSH)-recommended exposure levels. Conclusion: Industrial-scale AM machines using thermoplastics and resins released particles and organic vapors into workplace air. More research is needed to understand factors influencing real-world industrial- scale AM process emissions and exposures.

      • KCI등재

        Ustekinumab pharmacokinetics after subcutaneous administration in swine model

        Tomasz Grabowski,Artur Burmańczuk,Rafał Derlacz,Tadeusz Stefaniak,Anna Rząsa,Jacek Borkowski 대한수의학회 2021 Journal of Veterinary Science Vol.22 No.5

        Background: Due to multiple similarities in the structure and physiology of human and pig skin, the pig model is extremely useful for biological drug testing after subcutaneous administration. Knowledge of the differences between subcutaneous injection sites could have a significant impact on the absorption phase and pharmacokinetic profiles of biological drugs. Objectives: This study aimed to analyze the impact of administration site on pharmacokinetics and selected biochemical and hematological parameters after a single subcutaneous administration of ustekinumab in pigs. Drug concentrations in blood plasma were analyzed by enzyme-linked immunosorbent assay. Pharmacokinetic analyses were performed based on raw data using Phoenix WinNonlin 8.1 software and ThothPro v 4.1. Methods: The study included 12 healthy, female, large white piglets. Each group received a single dose of ustekinumab given as a 1 mg/kg subcutaneous injection into the internal part of the inguinal fold or the external part of the inguinal fold. Results: The differences in absorption rate between the internal and external parts of the inguinal fold were not significant. However, the time of maximal concentration, clearance, area under the curve calculated between zero and mean residence time and mean residence time between groups were substantially different (p > 0.05). The relative bioavailability after administration of ustekinumab into the external part of the inguinal fold was 40.36% lower than after administration of ustekinumab into the internal part of the inguinal fold. Conclusions: Healthy breeding pigs are a relevant model to study the pharmacokinetic profile of subcutaneously administered ustekinumab.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼