RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        INVESTIGATION OF OCCUPANT LOWER EXTREMITY INJURES UNDER VARIOUS OVERLAP FRONTAL CRASHES

        Fuhao Mo,Shuyong Duan,Xiaoqing Jiang,Sen Xiao,Zhi Xiao,Wei Shi,Kai Wei 한국자동차공학회 2018 International journal of automotive technology Vol.19 No.2

        Objective: With widely usage of restraint system, fatal injuries to occupants have been largely limited while non-fatal lower extremity injuries have not been effectively improved. The present study aims to investigate occupant lower extremity injuries under realistic impact environments. Methods: A biofidelic lower extremity model, a dummy model and a car cab model were combined to set up a realistic impact environment. Three typical frontal impact groups were simulated. Occupant global lower kinematics, long bone axial force and bending moment were presented to in-depth investigate lower extremity injury mechanism and tolerance. Results: Various overlap frontal impacts cause totally different lower extremity kinematics in the combination of structural invasion and restraint system effects. The femur fracture occurred at a small axial force of 7.57 kN combing a substantial bending moment peak of 172 Nm. Ankle joint injuries were found in 100 % and 25 % overlap impacts that present large tibial axial force and joint rotation angle. Conclusions: Overall results indicate that a coupling threshold of femur axial force and bending moment is of rationality to predict global femur fracture. The ankle joint injury occurrence is significantly related to the coupling effects of tibia axial force and excessive self-kinematics.

      • KCI등재

        Multi-objective robust optimization method for the modified epoxy resin sheet molding compounds of the impeller

        Qu, Xiaozhang,Liu, Guiping,Duan, Shuyong,Yang, Jichu Society for Computational Design and Engineering 2016 Journal of computational design and engineering Vol.3 No.3

        A kind of modified epoxy resin sheet molding compounds of the impeller has been designed. Through the test, the non-metal impeller has a better environmental aging performance, but must do the waterproof processing design. In order to improve the stability of the impeller vibration design, the influence of uncertainty factors is considered, and a multi-objective robust optimization method is proposed to reduce the weight of the impeller. Firstly, based on the fluid-structure interaction, the analysis model of the impeller vibration is constructed. Secondly, the optimal approximate model of the impeller is constructed by using the Latin hypercube and radial basis function, and the fitting and optimization accuracy of the approximate model is improved by increasing the sample points. Finally, the micro multi-objective genetic algorithm is applied to the robust optimization of approximate model, and the Monte Carlo simulation and Sobol sampling techniques are used for reliability analysis. By comparing the results of the deterministic, different sigma levels and different materials, the multi-objective optimization of the SMC molding impeller can meet the requirements of engineering stability and lightweight. And the effectiveness of the proposed multi-objective robust optimization method is verified by the error analysis. After the SMC molding and the robust optimization of the impeller, the optimized rate reached 42.5%, which greatly improved the economic benefit, and greatly reduce the vibration of the ventilation system.

      • KCI등재

        Performance Degradation Model and Reliability Evaluation of Brush DC Motor for the Intelligent on–Off Valve

        Yang Tianhao,Li Shanhu,Duan Shuyong,Tao Yourui,Han Xu 대한전기학회 2023 Journal of Electrical Engineering & Technology Vol.18 No.3

        Application of the intelligent on–off valve reduces heat loss. As the critical control component of the intelligent on–off valve, the health state of the brush DC motor directly impacts whether the intelligent on–off valve can perform the regular operation. Therefore, the reliability evaluation of the brush DC motor is of great significance to the whole heat supply network. In this study, the failure mechanism of the brush DC motor is analyzed, and the absolute value of steady-state current variation is taken as the performance degradation characteristic parameter. According to the performance degradation characteristic parameter, the performance degradation model based on the Wiener process is established, and the inverse power rate acceleration model is introduced into the Wiener process to derive the reliability function of the motor. Based on the actual operating conditions that the motor in the intelligent on–off valve needs to start and stop frequently, an accelerated life test based on start-stop is designed. The error analysis result shows that the error between the expected start-stop times predicted by the proposed and the actual average failure start-stop times is only 2.14%. The proposed degradation model is more accurate than the motor's traditional performance degradation model.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼