RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        First principles study of carrier activity, lifetime and absorption spectrum to investigate effects of strain on the photocatalytic performance of doped ZnO

        Hou Qingyu,Qi Mude,Yin Xiang,Wang Zhichao,Sha Shulin 한국물리학회 2022 Current Applied Physics Vol.33 No.-

        Doping of isovalent (S, Se, and Te) elements in ZnO is a new doping method. However, the factors affecting the photocatalytic performance of a doped system by triaxial strain are often ignored. In this study, we have applied strain on model and performed first-principle calculation to investigate the effect of triaxial strain on the stability of the doped system, red shift of the absorption spectrum, electric dipole moment, and carrier lifetime. Calculation results showed that all doped systems exhibited high binding energy and stability under unstrained conditions. However, when the applied strain was increased, the energy of all the systems increased, and the stability decreased. The stability, red shift of absorption spectrum, electric dipole moment, and carrier lifetime of all doped systems were studied. When the tensile strain was 5%, the red shift of the absorption spectrum and the electric dipole moment of the doped system (Zn36SO35) were the largest. Moreover, the carrier lifetime of the doped system (Zn36SO35) was the longest. Considering the red shift of the absorption spectrum, electric dipole moment, and carrier lifetime, the photocatalytic performance of the doped system (Zn36SO35) was the best, when the tensile strain was 5%.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼