RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Axial Compressive Performance of CFRP Confined Self-stressing High-strength Concrete Cylinders

        Qi Cao,Xiaojun Liu,Rongxiong Gao 대한토목학회 2019 KSCE JOURNAL OF CIVIL ENGINEERING Vol.23 No.9

        Due to the advantages of FRP (fiber reinforced polymer), such as light weight, high strength and corrosion resistance, FRP-confined concrete columns are gradually applied in civil engineering structures and have drawn wide attention from the engineering community. In order to avoid the stress hysteresis of CFRP (carbon fiber reinforced polymer) and make full use of FRP materials, expansive agent was added to concrete to make self-stressing high-strength concrete. In this study, the axial compression performance of 18 CFRP-confined self-stressing high-strength concrete cylinders was examined. The parameters include the CFRP layers and the level of prestress (with or without prestress). Experimental results show that 3.53 − 5.34 MPa prestress in concrete and 799.3 − 1,584.2 MPa prestress in CFRP are produced in the composite cylinder. The stress-strain curves obtained from the experiment shows that the intercept stress, inflection stress and peak stress of the self-stressing specimens are all higher than those of the non-prestressed specimens. With the application of prestress, the utilization ratio of CFRP increases as well. In the theoretical calculation of intercept and peak stress, by modifying the existing models, the experimental results are in good agreement with the calculated results.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼