RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUS

        Experimental characterization of the self-healing capacity of cement based materials and its effects on the material performance: A state of the art report by COST Action SARCOS WG2

        Ferrara, Liberato,Van Mullem, Tim,Alonso, Maria Cruz,Antonaci, Paola,Borg, Ruben Paul,Cuenca, Estefania,Jefferson, Anthony,Ng, Pui-Lam,Peled, Alva,Roig-Flores, Marta,Sanchez, Mercedes,Schroefl, Christ Elsevier 2018 Construction and Building Materials Vol.167 No.-

        <P><B>Abstract</B></P> <P>Heuristically known at least since the first half of XIX century, the self-healing capacity of cement-based materials has been receiving keen attention from the civil engineering community worldwide in the last decade. As a matter of fact, stimulating and/or engineering the aforementioned functionality via tailored addition and technologies, in order to make it more reliable in an engineering perspective, has been regarded as a viable pathway to enhance the durability of reinforced concrete structures and contribute to increase their service life.</P> <P>Research activities have provided enlightening contributions to understanding the mechanisms of crack self-sealing and healing and have led to the blooming of a number of self-healing stimulating and engineering technologies, whose effectiveness has been soundly proved in the laboratory and, in a few cases, also scaled up to field applications, with ongoing performance monitoring. Nonetheless, the large variety of methodologies employed to assess the effectiveness of the developed self-healing technologies makes it necessary to provide a unified, if not standardized, framework for the validation and comparative evaluation of the same self-healing technologies as above. This is also instrumental to pave the way towards a consistent incorporation of self-healing concepts into structural design and life cycles analysis codified approaches, which can only promote the diffusion of feasible and reliable self-healing technologies into the construction market.</P> <P>In this framework the Working Group 2 of the COST Action CA 15202 “Self-healing as preventive repair of concrete structures – SARCOS” has undertaken the ambitious task reported in this paper. As a matter of fact this state of the art provides a comprehensive and critical review of the experimental methods and techniques, which have been employed to characterize and quantify the self-sealing and/or self-healing capacity of cement-based materials, as well as the effectiveness of the different self-sealing and/or self-healing engineering techniques, together with the methods for the analysis of the chemical composition and intrinsic nature of the self-healing products. The review will also address the correlation, which can be established between crack closure and the recovery of physical/mechanical properties, as measured by means of the different reviewed tests.</P> <P><B>Highlights</B></P> <P> <UL> <LI> Review of test methods for assessing healing efficiency. </LI> <LI> Novel perspective in correlating healing to durability and mechanical recovery. </LI> <LI> Correlation between different test methods. </LI> <LI> Characterization methods of healing products. </LI> <LI> Pioneer monitored case studies are presented. </LI> </UL> </P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼