RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Three-Dimensional Upper Bound Limit Analysis of Tunnel Stability with an Extended Collapse Mechanism

        Zhizhen Liu,Ping Cao,Fei Wang,Jingjing Meng,Rihong Cao,Jingshuo Liu 대한토목학회 2022 KSCE JOURNAL OF CIVIL ENGINEERING Vol.26 No.12

        A three-dimensional collapse mechanism that can consider a combined collapse of the tunnel roof and the side walls is proposed in this work. The three-dimensional upper bound support pressure is formulated with the power balance principal in the upper bound theorem. The nonlinear Mohr-Coulomb failure criterion is used to replace the commonly used linear Mohr-Coulomb failure criterion. The method has been validated by a series of examples, in which the three-dimensional collapse mechanism and support pressures are in a good agreementwith the numerical results and solutions found in the literatures. Furthermore, sensitivity analyses of the geotechnical and geometrical parameters on the support pressure areconducted and the collapsing range is measured. The results show that a higher value of nonlinear failure coefficient, tensile strength, initial cohesion and tangential internal friction angle can increase tunnel stability, while tunnel stability is threatened by a higher value of burial depth, unit weight, tunnel width and height. The predicted collapse range increases noticeably with the increase of the nonlinear coefficient. This study is of great significance for predicting the three-dimensional safety support pressure and collapse mechanism of tunnel.

      • KCI등재

        Modified Double-Reduction Method considering Strain Softening and Equivalent Influence Angle

        Yifan Chen,Hang Lin,Yixian Wang,Rihong Cao,Chunyang Zhang,Yanlin Zhao 대한토목학회 2020 KSCE JOURNAL OF CIVIL ENGINEERING Vol.24 No.11

        Slope stability has been the research focus in the field of geotechnical engineering. Both the asynchronous decay speeds and distinct stability contributions of cohesion c and friction ϕduring slope instability have been evidenced. In this study, based on linear softening model and weighted average hypothesis, a modified double-reduction method is established. The research includes: 1) the asynchronism between decay speeds of c and ϕ are described by adopting different slopes in linear softening model for c and tanϕ, in which case the respective reduction factors in strength reduction method Fc and Fϕ are solved. 2) The distinct slope stability contributions of c and ϕ is readily linked with the different influences to safety factor, and therefore, introducing the equivalent influence angle θe (defined as the slope angle at which c and ϕ share identical contributions to stability), as well as its determination method. 3) According to weighted average hypothesis that the overall safety factor FS is the weighted average of Fc and Fϕ, the contribution scaling factor μ (defined as the weighted ratio of Fc and Fϕ is proposed, which promotes the solution of respective weighted coefficients wc and wϕ of two reduction factors by combining θe, achieving a new double-reduction method. 4) The validity of this method is verified via comprehensive comparison with existing double-reduction methods of practical slope examples.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼