RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Activity recognition of stroke-affected people using wearable sensor

        Anusha David,Rajavel Ramadoss,Amutha Ramachandran,Shoba Sivapatham 한국전자통신연구원 2023 ETRI Journal Vol.45 No.6

        Stroke is one of the leading causes of long-term disability worldwide, placing huge burdens on individuals and society. Further, automatic human activity recognition is a challenging task that is vital to the future of healthcare and physical therapy. Using a baseline long short-term memory recurrent neural network, this study provides a novel dataset of stretching, upward stretching, flinging motions, hand-to-mouth movements, swiping gestures, and pouring motions for improved model training and testing of stroke-affected patients. A MATLAB application is used to output textual and audible prediction results. A wearable sensor with a triaxial accelerometer is used to collect preprocessed real-time data. The model is trained with features extracted from the actual patient to recognize new actions, and the recognition accuracy provided by multiple datasets is compared based on the same baseline model. When training and testing using the new dataset, the baseline model shows recognition accuracy that is 11% higher than the Activity Daily Living dataset, 22% higher than the Activity Recognition Single Chest- Mounted Accelerometer dataset, and 10% higher than another real-world dataset.

      • KCI등재

        Improving classification accuracy of cancer types using parallel hybrid feature selection on microarray gene expression data

        Lokeswari Venkataramana,Shomona Gracia Jacob,Rajavel Ramadoss,Dodda Saisuma,Dommaraju Haritha,Kunthipuram Manoja 한국유전학회 2019 Genes & Genomics Vol.41 No.11

        Background Data mining techniques are used to mine unknown knowledge from huge data. Microarray gene expression (MGE) data plays a major role in predicting type of cancer. But as MGE data is huge in volume, applying traditional data mining approaches is time consuming. Hence parallel programming frameworks like Hadoop, Spark and Mahout are necessary to ease the task of computation. Objective Not all the gene expressions are necessary in prediction, it is very essential to select important genes for improving classification accuracy. So feature selection algorithms are parallelized and executed on Spark framework to eliminate unnecessary genes and identify only predictive genes in very less time without affecting prediction accuracy. Methods Parallelized hybrid feature selection (HFS) method is proposed to serve the purpose. This method includes parallelized correlation feature subset selection followed by rank-based feature selection methods. The selected subset of genes is evaluated using parallel classification algorithms. The accuracy values obtained are compared with existing rank-weight feature selection, parallelized recursive feature selection methods and also with the values obtained by executing parallelized HFS on DistributedWekaSpark. Results The classification accuracy obtained with the proposed parallelized HFS method is 97% and 79% for gastric cancer and childhood leukemia respectively. The proposed parallelized HFS method produced ~ 4% to ~ 15% improvement in classification accuracy when compared with previous methods. Conclusion The results reveal the fact that the proposed parallelized feature selection algorithm is scalable to growing medical data and predicts cancer sub-types in lesser time with higher accuracy.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼