RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Error compensation for snake arm maintainer under variable loads

        Guodong Qin,Huapeng Wu,Aihong Ji,Huan Shen,Qian Li,Qingfei Han,Zhikang Yang,Shikun Wen 대한기계학회 2023 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.37 No.2

        The cable-driven snake arm maintainer (SAM) simplifies the electronics of the entire snake arm and is well suited for operation in narrow and high-risk environments. However, the structural features of the SAM, the large slenderness ratio and the effects of variable loads and rigid-flexible coupling deformation lead to large end position error. In order to improve the positional accuracy, a joint space error compensation model of a SAM is constructed using the matrix differentiation method. The error parameters under different loads and different poses are identified based on the principles of variable parameter error compensation and a linearized variable-load variable-parameter model. Parameter errors are then calculated by the Levenberg-Marquardt nonlinear damped least-squares algorithm. Finally, we verify the effectiveness of the proposed algorithm by simulation and error compensation experiments. The results of the study provide a theoretical basis for further accuracy improvement and application expansion of the SAM.

      • KCI등재

        Experimental Study on the Wing Parameter Optimization of Flapping-Wing Aircraft Based on the Clap-and-Fling Mechanism

        Qian Li,Aihong Ji,Huan Shen,Renshu Li,Kun Liu,Xiangming Zheng,Lida Shen,Qingfei Han 한국항공우주학회 2022 International Journal of Aeronautical and Space Sc Vol.23 No.2

        The design of a flapping-wing aircraft is mainly inspired by flying animals: to improve the lift and efficiency of flapping-wing aircraft, their wings, an essential part of the aircraft, mimic the configuration and geometric characteristics of flying animals. Herein, we conducted wing parameter optimization experiments by changing the wing-vein layout, aspect ratio (AR), surface area, and leading-edge-rod flexibility of a flapping-wing aircraft having four wings with double wing clap-and-fling effects. The AR and leading-edge-rod flexibility significantly influenced the lift through the aircraft’s clap-and-fling effects. Analyzing the wing deformation and lift fluctuation revealed that the leading-edge-rod flexibility delayed the trailing-edge separation during clapping, resulting in a large lift at the beginning of peeling. A pentagonal wing of 155-mm wing length, 5.0 AR, a 100-mm breaking point, and an 80-mm wing-vein convergence point at the leading-edge-rod near the wing root was deemed the optimal wing design. This optimal wing design was used to build a 30 g flapping-wing aircraft for an outdoor flight test, which could fly for 6.5 min with a 4.5-g load, thus demonstrating the developed prototype’s potential for autonomous flight.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼