RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Tumor Targeting and pH-Responsive Polyelectrolyte Complex Nanoparticles Based on Hyaluronic Acid-Paclitaxel Conjugates and Chitosan for Oral Delivery of Paclitaxel

        Jiao Li,Pingsheng Huang,Longlong Chang,Xingwen Long,Anjie Dong,Jinjian Liu,Liping Chu,Fuqiang Hu,Jianfeng Liu,Liandong Deng 한국고분자학회 2013 Macromolecular Research Vol.21 No.12

        A new platform of paclitaxel (PTX) for application as an oral delivery system was developed, by combining the pH sensitivity of polyelectrolyte complex nanoparticles (CNPs) and the active targeting of hyaluronic acid (HA). Chitosan/hyaluronic acid-paclitaxel (CS/HA-PTX) CNPs were prepared by coating the CS onto the HA-PTX nanoparticles (NPs), and characterized by Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance (1H NMR), transmission electron microscopy (TEM) and high-performance liquid chromatography (HPLC). HA-PTX conjugates could self-assemble into NPs in aqueous solution with an average size of 100±5 nm, and the PTX content of HA-PTX conjugates was 10.6 wt%. The CS/HA-PTX CNPs had a smaller size and higher PTX content when the ratio of positive charge to negative charge was 2:1. The in vitro release of PTX from CNPs was pH-responsive,suggesting that the CS shell could prevent the breakage of the ester bond in HA-PTX NPs in acidic pH conditions. HA-PTX NPs exhibited higher cellular uptake than free PTX against HepG2 cells via receptor-mediated endocytosis. PTX could accumulate remarkably into tumor sites after oral administration of CNPs. These results indicate that the CNP drug delivery system has great potential for applications in the oral administration of hydrophobic drugs.

      • KCI등재

        Hyaluronic-Acid-Nanomedicine Hydrogel for Enhanced Treatment of Rheumatoid Arthritis by Mediating Macrophage–Synovial Fibroblast Cross-Talk

        Yaping Wang,Jingrong Wang,Mengze Ma,Rui Gao,Yan Wu,Chuangnian Zhang,Pingsheng Huang,Weiwei Wang,Zujian Feng,Jianbo Gao 한국생체재료학회 2024 생체재료학회지 Vol.28 No.00

        The occurrence of rheumatoid arthritis (RA) is highly correlated with progressive and irreversible damage of articular cartilage and continuous inflammatory response. Here, inspired by the unique structure of synovial lipid–hyaluronic acid (HA) complex, we developed supramolecular HA-nanomedicine hydrogels for RA treatment by mediating macrophage–synovial fibroblast cross-talk through locally sustained release of celastrol (CEL). Molecular dynamics simulation confirmed that HA conjugated with hydrophobic segments could interspersed into the CEL-loaded [poly(ε-caprolactone-co-1,4,8-trioxa[4.6]spiro-9-undecanone)–poly(ethylene glycol)–poly(ε-caprolaone-co-1,4,8-trioxa[4.6]spiro-9-undecanone] (PECT) nanoparticles to form the supramolecular nanomedicine hydrogel HA-poly(ε-caprolactone-co-1,4,8-trioxa[4.6]spiro-9-un-decanone)/PECT@CEL (HP@CEL), enabling fast hydrogel formation after injection and providing a 3-dimensional environment similar with synovial region. More importantly, the controlled release of CEL from HP@CEL inhibited the macrophage polarization toward the proinflammatory M1 phenotype and further suppressed the proliferation of synovial fibroblasts by regulating the Toll-like receptor pathway. In collagen-induced arthritis model in mice, HP@CEL hydrogel treatment substantial attenuated clinical symptoms and bone erosion and improved the extracellular matrix deposition and bone regeneration in ankle joint. Altogether, such a bioinspired injectable polymer-nanomedicine hydrogel represents an effective and promising strategy for suppressing RA progression through augmenting the cross-talk of macrophages and synovial fibroblast for regulation of chronic inflammation.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼