RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Using a Two Species Competitive Binding Model to Predict Expanded Bed Breakthrough of a Recombinant Protein Expressed in a High Cell Density Fermentation

        William Kelly,Guy Kamguia,Peter Mullen,Antonio Ubiera,Kent Göklen,Zuyi Huang,Gerard Jones 한국생물공학회 2013 Biotechnology and Bioprocess Engineering Vol.18 No.3

        Expanded Bed experiments were conducted using a mixed mode (MM) resin to capture and purify a recombinant protein produced in yeast fermentation. Expanded bed breakthrough profiles show an overshoot in column effluent concentration of the target protein in the presence of cells and other broth proteins, similar to that seen by other researchers when loading two competing species onto packed beds. In this research, a numerical model assuming negligible axial dispersion is developed and first validated for columns loads that contain only the target protein. This model is solved by finite differences in a unique way that uses an embedded analytical-solution to increase solution speed and stability. To model expanded bed breakthrough of the target protein in the actual cell broth, it was assumed that the other non-product proteins in the broth compete for MM resin binding sites and might be represented as a second “average” species via a traditional two-component competitive Langmuir isotherm. Estimates of the Langmuir constant and broth concentration of this second species were then calculated from batch adsorption data. Using these parameters for the second species, and other batch-derived parameters for the target protein with this resin, this unique numerical modeling approach provided results that compare favorably to experimental breakthrough data at various flow rates. Finally, the model was employed for a parameter sensitivity analysis that shows which process variables are most important in determining breakthrough time and the shape and magnitude of the concentration overshoot.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼