RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Enhanced Microwave Absorption Properties of Metal Organic Framework (MOF)-Derived Carbonaceous ZnO Incorporated Reduced Graphene Oxide Composites

        Zhongfei Liu,Jiangtao Yuan,HUI ZHANG,Kuangwei Xiong,Shaowei Jin,Peihong Wang 성균관대학교(자연과학캠퍼스) 성균나노과학기술원 2019 NANO Vol.14 No.1

        In this paper, the MOFs-derived carbonaceous ZnO and RGO (carbonaceous ZnO/RGO) composites have been prepared by the wet chemical method and carbonization process. The as-prepared products are characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), Raman spectra, thermogravimetric (TG) analysis and X-ray photoelectron spectroscopy (XPS). The electromagnetic parameters of carbonaceous ZnO/RGO composites are investigated by the vector network analyzer. The results exhibit carbonaceous ZnO/RGO composites have a maximum absorption of - 37.12 dB at 6 GHz with thickness of 3.5 mm and the effective absorption (below -10 dB) bandwidth is up to 1.92 GHz (from 5.28 to 7.2 GHz). Thus, the carbonaceous ZnO/RGO composites have great potential in the field of electromagnetic wave absorption.

      • KCI등재

        A Tower-Shaped Three-Dimensional Piezoelectric Energy Harvester for Low-Level and Low-Frequency Vibration

        Xiaoxiang Wei,Haibo Zhao,Junjie Yu,Yiming Zhong,Yanlin Liao,Shiwei Shi,Peihong Wang 한국정밀공학회 2021 International Journal of Precision Engineering and Vol.8 No.5

        The multiple forms of vibration exist in an ambient environment diffusely and already become a considerable object for energy harvesting. However, how to effectively extract low-level, low-frequency, and multi-directional vibration from the ambient environment is becoming a key issue in the field of energy harvesting. To solve this issue, a tower-shaped piezoelectric vibration energy harvester (TS-PVEH) is reported. Finite element simulation indicates that TS-PVEH works in two fundamental modes, i.e., its in-plane and out-of-plane vibration modes. Meanwhile, simulation results show that the natural frequency of TS-PVEH is 3.39 Hz, 3.40 Hz, and 11.50 Hz, respectively; and the experiments also verified that. By virtue of the tower structure of TS-PVEH, the device is pretty sensitive to three-dimensional vibration. At a low level of acceleration 1 m/s 2 , the maximum load power of TS-PVEH is 65.8 μW in out-of-plane mode and 17.2 μW in in-plane mode, respectively. Furthermore, the effects of the PVDF connection mode on the output performance of TS-PVEH were studied in detail, and comparative experimental results show that a reasonable connection of PVDF can improve energy harvesting efficiency. The proposed TS-PVEH is expected to be used to scavenge energy from multi-dimensional, low-level, and low-frequency vibrations that present in an ambient environment.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼