RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Combined effects of direct plasma exposure and pre-plasma functionalized metal-doped graphene oxide nanoparticles on wastewater dye degradation

        K. Navaneetha Pandiyaraj,D. Vasu,A. Raji,Rouba Ghobeira,Parinaz Saadat Esbah Tabaei,Nathalie De Geyter,Rino Morent,M.C. Ramkumar,M. Pichumani,R.R. Deshmukh 한국공업화학회 2023 Journal of Industrial and Engineering Chemistry Vol.122 No.-

        The current study investigates the combinatorial effect of the photocatalytic performance of plasma pretreatedTi-Cu-Zn doped graphene oxide (TCZ-GO) nanoparticles (NPs) and advanced oxidation processesof a non-thermal atmospheric pressure plasma on the degradation of reactive orange-122 (RO-122) dyecompounds. Firstly, in order to enhance the photocatalytic performance of the synthesized compositeNPs, they were subjected to glow discharge plasma treatments operating in different gases (Ar, air, O2and N2). Their surface morphology, chemical composition and band gap were examined by means ofscanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and UV–Vis spectrophotometryrespectively. XPS results revealed that plasma-treated NPs exhibited a higher content of oxygenvacancies and a variation in their oxidation states (Ti4+?Ti3+, Cu+?Cu2+). These plasma-induced surfacechemical changes hindered the recombination of photo-generated electron-hole pairs which led to a dropin the bandgap of the NPs with N2 plasma-treated NPs acquiring the lowest bandgap. Lastly, the articleexamined the actual decomposition of RO-122 dye in wastewater by an Ar plasma treatment alone orcombined with the plasma-treated TCZ-GO NPs via spectrophotometric analyses, electrical conductivity,pH and total organic carbon (TOC) removal measurements. Moreover, the reactive species produced duringthe combined plasma/photocatalysis induced degradation were detected in situ by optical emissionspectroscopy. Results revealed that the processes carried out by combining N2 plasma-treated TCZ-GONPs and Ar plasma exhibited the highest degradation efficiency (85 %) due to the generation of moreOH and H2O2. Overall, it can be concluded that plasma-aided treatment processes used synergisticallyas indirect surface functionalization of TCZ-GO NPs and direct plasma treatment of wastewater are extremelyefficient in the degradation of toxic compounds and can be extrapolated to various environmentalapplications.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼