RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCISCIESCOPUS

        Hybrid circuit cavity quantum electrodynamics with a micromechanical resonator

        Pirkkalainen, J.-M.,Cho, S. U.,Li, Jian,Paraoanu, G. S.,Hakonen, P. J.,Sillanpä,ä,, M. A. Nature Publishing Group, a division of Macmillan P 2013 Nature Vol.494 No.7436

        Hybrid quantum systems with inherently distinct degrees of freedom have a key role in many physical phenomena. Well-known examples include cavity quantum electrodynamics, trapped ions, and electrons and phonons in the solid state. In those systems, strong coupling makes the constituents lose their individual character and form dressed states, which represent a collective form of dynamics. As well as having fundamental importance, hybrid systems also have practical applications, notably in the emerging field of quantum information control. A promising approach is to combine long-lived atomic states with the accessible electrical degrees of freedom in superconducting cavities and quantum bits (qubits). Here we integrate circuit cavity quantum electrodynamics with phonons. Apart from coupling to a microwave cavity, our superconducting transmon qubit, consisting of tunnel junctions and a capacitor, interacts with a phonon mode in a micromechanical resonator, and thus acts like an atom coupled to two different cavities. We measure the phonon Stark shift, as well as the splitting of the qubit spectral line into motional sidebands, which feature transitions between the dressed electromechanical states. In the time domain, we observe coherent conversion of qubit excitation to phonons as sideband Rabi oscillations. This is a model system with potential for a quantum interface, which may allow for storage of quantum information in long-lived phonon states, coupling to optical photons or for investigations of strongly coupled quantum systems near the classical limit.

      • KCI등재후보

        Formation of metallic NbSe2 nanotubes and nanofibers

        T.Tsuneta,T.Toshima,K.Inagaki,T.Shibayama,S.Tanda,S.Uji,M.Ahlskog,P.Hakonen,M.Paalanen 한국물리학회 2003 Current Applied Physics Vol.3 No.6

        We succeed in synthesizing NbSe2 nanotubes along with nanofibers by chemical vapor transportation. They are stable crystalline systems and can be synthesized reproducibly in a nearly equilibrium reacting process. We have investigated these nanosize structures of NbSe2 by transmission electron microscopy and electron diffraction. Both of the structures have a similar size of 100–200 nm in diameter. While nanotubes consist of rolled-up NbSe2 layers, nanofibers are a pile of thin flat layers. We propose a mechanism of the formation of NbSe2 nanotubes and nanofibers on the basis of deseleniditive transition from a NbSe3 fiber-shaped crystal. We also measured electrical resistance of the nanofibers with conductive atomic force microscopy and demonstrated that the material show metallic behavior at room temperature. 2003 Elsevier B.V. All rights reserved.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼