RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Vertical Building Collapse Triggered by Loss of All Columns in the Ground Story−Last Line of Defense

        Nikolay Lalkovski,Uwe Starossek 한국강구조학회 2016 International Journal of Steel Structures Vol.16 No.2

        In multi-story buildings, one of the worst collapse types in terms of structural damage and loss of life is the pancake-type collapse, where some or all floors end up lying on top of each other like the layers of a pancake, with the floor contents crushed between them. Mostly observed after strong earthquakes, such collapses are triggered by loss of some or all vertical load bearing elements in some story−often the ground story. Once this occurs, the building part above the lost vertical elements− still intact−starts gaining downward velocity until it meets resistance from below. The ensuing impact forces often lead to collapse progression ending in total collapse. However, there are some examples of buildings in which the columns of an entire story failed and the collapse remained arrested after the subsequent impact. Such cases were observed in the 1995 Kobe earthquake and in the 1985 Mexico City earthquake. There have also been some failed controlled demolition attempts in which the intended total vertical collapse did not occur after letting a building collide with the ground by explosive removal of the vertical load bearing elements in the lowest stories. In an attempt to determine the factors which play the main role in arresting vertical collapse once initiated at the ground level, this paper studies the behavior of vertically falling multi-story building structures impacting a rigid surface representing the ground. A simplified analytical model of the problem is presented. Depending on the structural properties, several possible energy dissipation mechanisms, and−in case the collapse cannot be arrested at impact−collapse modes, are identified.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼