http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
Vieira Douglas Henrique,Nogueira Gabriel Leonardo,Nascimento Mayk Rodrigues,Fugikawa-Santos Lucas,Alves Neri 한국물리학회 2023 Current Applied Physics Vol.53 No.-
Charge-trap memory phenomena were demonstrated in an electrolyte-gated transistor (EGT) using a spray-coated zinc oxide (ZnO) active layer and a cellulose-based electrolyte. The EGT exhibited efficient programming and erasing characteristics at low voltages, shifting the threshold voltage and the magnitude of the on-current. This behavior is discussed in terms of the influence of charged trapping states at the ZnO/electrolyte interface and within the ZnO bulk. The presence of these traps leads to a shift in the mobility from 0.57 ± 0.16 cm2 V-1 s-1 in the initial state to 0.02 ± 0.01 cm2 V-1 s-1 when programmed. Retention experiments revealed improved stability of the memory state when a low positive voltage is applied to the gate, indicating that the device’s characteristics are extremely sensitive to the trapping/detrapping of charges at the semiconductor/ electrolyte interface. Capacitance spectroscopy measurements using planar and metal-insulator-semiconductor configurations within the same device were used to analyze the charging dynamics of the trap states at different programming states.