RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Design optimization in hard turning of E19 alloy steel by analysing surface roughness, tool vibration and productivity

        Mohamed Walid Azizi,Ouahid Keblouti,Lakhdar Boulanouar,Mohamed Athmane Yallese 국제구조공학회 2020 Structural Engineering and Mechanics, An Int'l Jou Vol.73 No.5

        In the present work, the optimization of machining parameters to achieve the desired technological parameters such as surface roughness, tool radial vibration and material removal rate have been carried out using response surface methodology (RSM). The hard turning of EN19 alloy steel with coated carbide (GC3015) cutting tools was studied. The main problem faced in manufacturer of hard and high precision components is the selection of optimum combination of cutting parameters for achieving required quality of surface finish with maximum production rate. This problem can be solved by development of mathematical model and execution of experiments by RSM. A face centred central composite design (FCCD), which comes under the RSM approach, with cutting parameters (cutting speed, feed rate and depth of cut) was used for statistical analysis. A second-order regression model were developed to correlate the cutting parameters with surface roughness, tool vibration and material removal rate. Consequently, numerical and graphical optimization were performed to obtain the most appropriate cutting parameters to produce the lowest surface roughness with minimal tool vibration and maximum material removal rate using desirability function approach. Finally, confirmation experiments were performed to verify the pertinence of the developed mathematical models.

      • KCI등재

        Surface roughness and cutting forces modeling for optimization of machining condition in finish hard turning of AISI 52100 steel

        Mohamed Walid Azizi,Salim Belhadi,Mohamed Athmane Yallese,Tarek Mabrouki,Jean-François Rigal 대한기계학회 2012 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.26 No.12

        An experimental investigation was conducted to analyze the effect of cutting parameters (cutting speed, feed rate and depth of cut) and workpiece hardness on surface roughness and cutting force components. The finish hard turning of AISI 52100 steel with coated Al2O3 +TiC mixed ceramic cutting tools was studied. The planning of experiment were based on Taguchi’s L27 orthogonal array. The response table and analysis of variance (ANOVA) have allowed to check the validity of linear regression model and to determine the significant parameters affecting the surface roughness and cutting forces. The statistical analysis reveals that the feed rate, workpiece hardness and cutting speed have significant effects in reducing the surface roughness; whereas the depth of cut, workpiece hardness and feed rate are observed to have a statistically significant impact on the cutting force components than the cutting speed. Consequently, empirical models were developed to correlate the cutting parameters and workpiece hardness with surface roughness and cutting forces. The optimum machining conditions to produce the lowest surface roughness with minimal cutting force components under these experimental conditions were searched using desirability function approach for multiple response factors optimization. Finally, confirmation experiments were performed to verify the pertinence of the developed empirical models.

      • KCI등재

        Modeling and optimization of hard turning of X38CrMoV5-1 steel with CBN tool: Machining parameters effects on flank wear and surface roughness

        Hamdi Aouici,Mohamed Athmane Yallese,Brahim Fnides,Kamel Chaoui,Tarek Mabrouki 대한기계학회 2011 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.25 No.11

        The present study, aims to investigate, under turning conditions of hardened AISI H11 (X38CrMoV5-1), the effects of cutting parameters on flank wear (VB) and surface roughness (Ra) using CBN tool. The machining experiments are conducted based on the response surface methodology (RSM). Combined effects of three cutting parameters, namely cutting speed, feed rate and cutting time on the two performance outputs (i.e. VB and Ra), are explored employing the analysis of variance (ANOVA). Optimal cutting conditions for each performance level are established and the relationship between the variables and the technological parameters is determined using a quadratic regression model. The results show that the flank wear is influenced principally by the cutting time and in the second level by the cutting speed. Also, it is that indicated that the feed rate is the dominant factor affecting workpiece surface roughness.

      • RSM-based MOALO optimization and cutting inserts evaluation in dry turning of AISI 4140 steel

        Billel Hamadi,Mohamed Athmane Yallese,Lakhdar Boulanouar,Mourad Nouioua,Abderazek Hammoudi 국제구조공학회 2022 Structural Engineering and Mechanics, An Int'l Jou Vol.84 No.1

        An experimental study is carried out to investigate the performance of the cutting tool regarding the insert wear, surface roughness, cutting forces, cutting power and material removal rate of three coated carbides GC2015 (TiCN-Al2O3-TiN), GC4215 (Al2O3-Ti(C,N)) and GC1015 (TiN) during the dry turning of AISI4140 steel. For this purpose, a Taguchi design (L9) was adopted for the planning of the experiments, the effects of cutting parameters on the surface roughness (Ra), tangential cutting force (Fz), the cutting power (Pc) and the material removal rate (MRR) were studied using analysis of variance (ANOVA), the response surface methodology (RSM) was used for mathematical modeling, with which linear mathematical models were developed for forecasting of Ra, Fz, Pc and MRR as a function of cutting parameters (Vc, f, and ap). Then, Multi-Objective Ant Lion Optimizer (MOALO) has been implemented for multi-objective optimization which allows manufacturers to enhance the production performances of the machined parts. Furthermore, in order to characterize and quantify the flank wear of the tested tools, some machining experiments were performed for 5 minutes of turning under a depth of 0.5 mm, a feed rate of 0.08 mm/rev, and a cutting speed of 350 m/min. The wear results led to a ratio (VB-GC4215/VB-GC2015) of 2.03 and (VB-GC1015/VB-GC2015) of 4.43, thus demonstrating the efficiency of the cutting insert GC2015. Moreover, SEM analysis shows the main wear mechanisms represented by abrasion, adhesion and chipping.

      • Machinability investigation of gray cast iron in turning with ceramics and CBN tools: Modeling and optimization using desirability function approach

        Boutheyna Gasmi,Mohamed Athmane Yallese,Septi Boucherit,Salim Chihaoui,Tarek Mabrouki 국제구조공학회 2023 Structural Engineering and Mechanics, An Int'l Jou Vol.86 No.1

        The purpose of this research is to assess the performance of CBN and ceramic tools during the dry turning of gray cast iron EN GJL-350. During the turning operation, the variable machining parameters are cutting speed, feed rate, depth of cut and type of the cutting material. This contribution consists of two sections, the first one deals with the performance evaluation of four materials in terms of evolution of flank wear, surface roughness (2D and 3D) and cutting forces. The focus of the second section is on statistical analysis, followed by modeling and optimization. The experiments are conducted according to the Taguchi design L32 and based on ANOVA approach to quantify the impact of input factors on the output parameters, namely, the surface roughness (Ra), the cutting force (Fz), the cutting power (Pc), specific cutting energy (Ecs). The RSM method was used to create prediction models of several technical factors (Ra, Fz, Pc, Ecs and MRR). Subsequently, the desirability function approach was used to achieve a multi-objective optimization that encompasses the output parameters simultaneously. The aim is to obtain optimal cutting regimes, following several cases of optimization often encountered in industry. The results found show that the CBN tool is the most efficient cutting material compared to the three ceramics. The optimal combination for the first case where the importance is the same for the different outputs is Vc=660 m/min, f=0.116 mm/rev, ap=0.232 mm and the material CBN. The optimization results have been verified by carrying out confirmation tests.

      • KCI등재

        Effects of coating material and cutting parameters on the surface roughness and cutting forces in dry turning of AISI 52100 steel

        Ouahid Keblouti,Lakhdar Boulanouar,Mohamed Walid Azizi,Mohamed Athmane Yallese 국제구조공학회 2017 Structural Engineering and Mechanics, An Int'l Jou Vol.61 No.4

        In the present paper, the effects of cutting parameters and coating material on the performances of cutting tools in turning of AISI 52100 steel are discussed experimentally. A comparative study was carried out between uncoated and coated (with TiCN-TiN coating layer) cermet tools. The substrate composition and the geometry of the inserts compared were the same. A mathematical model was developed based on the Response Surface Methodology (RSM). ANOVA method was used to quantify the effect of cutting parameters on the machining surface quality and the cutting forces. The results show that feed rate has the most effect on surface quality. However, cutting depth has the significant effect on the cutting force components. The effect of coating layers on the surface quality was also studied. A lower surface roughness was observed when using PVD (TiCN-TiN) coated insert. A second order regression model was developed and a good accuracy was obtained with correlation coefficients in the range of 95% to 97%.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼