RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCISCIESCOPUS

        Sequential activation of anticancer therapy triggered by tumor microenvironment-selective imaging

        Shim, Gayong,Le, Quoc-Viet,Suh, Juhan,Choi, Sunhee,Kim, Gunwoo,Choi, Han-Gon,Kim, Young Bong,Macgregor Jr, Robert B.,Oh Jr, Yu-Kyoung Elsevier Science Publishers 2019 Journal of controlled release Vol.298 No.-

        <P><B>Abstract</B></P> <P>The combination of imaging and anticancer therapy has recently emerged as a promising strategy. However, nonspecific imaging signals and distribution of anticancer drugs at normal tissues limit the specificity of the combination therapy. To overcome the challenges, we designed a system which can selectively visualize cancer tissues and initiate the subsequent action of therapeutic molecules in tumor microenvironment. Exploiting the overexpression of matrix metalloproteinase (MMP) in the tumor microenvironment, we designed a graphene oxide (GO)-based nanosheet system loaded with a pegylated MMP-cleavable imaging probe and an anticancer peptide shielded under the imaging probe. GO loaded with pegylated imaging probe derivative and anticancer buforin IIb peptide (IPGO/BF) was not fluorescent and BF hidden within pegylated surfaces did not exert anticancer activity. However, in tumor microenvironment, IPGO/BF selectively provided imaging by liberating pegylated fluorescent moiety. The cleavage of MMP-sensitive peptide triggered imaging signal and subsequent exposure of shielded BF on GO and enhanced its therapeutic function. SCC7 tumor-bearing mice treated with IPGO/BF exhibited selective fluorescence in tumor tissues, and greater imaging signal-dependent antitumor effects compared with other groups. The selective imaging-dependent sequential activation of anticancer therapy in tumor microenvironment would be a feasible strategy to reduce the nonspecific false-positive signals of tumor imaging and undesirable side effects of anticancer drugs at normal tissues.</P> <P><B>Graphical abstract</B></P> <P>[DISPLAY OMISSION]</P>

      • Stemmed DNA nanostructure for the selective delivery of therapeutics

        Jin, H.,Kim, M. G.,Ko, S. B.,Kim, D. H.,Lee, B. J.,Macgregor, Jr., R. B.,Shim, G.,Oh, Y. K. The Royal Society of Chemistry 2018 Nanoscale Vol.10 No.16

        <P>DNA has emerged as a biocompatible biomaterial that may be considered for various applications. Here, we report tumor cell-specific aptamer-modified DNA nanostructures for the specific recognition and delivery of therapeutic chemicals to cancer cells. Protein tyrosine kinase (PTK)7-specific DNA aptamer sequences were linked to 15 consecutive guanines. The resulting aptamer-modified product, AptG15, self-assembled into a Y-shaped structure. The presence of a G-quadruplex at AptG15 was confirmed by circular dichroism and Raman spectroscopy. The utility of AptG15 as a nanocarrier of therapeutics was tested by loading the photosensitizer, methylene blue (MB), to the G-quadruplex as a model drug. The generated MB-loaded AptG15 (MB/AptG15) showed specific and enhanced uptake to CCRF-CEM cells, which overexpress PTK7, compared with Ramos cells, which lack PTK7, or CCRF-CEM cells treated with a PTK7-specific siRNA. The therapeutic activity of MB/AptG15 was tested by triggering its photodynamic effects. Upon 660 nm light irradiation, MB/AptG15 showed greater reactive oxygen species generation and anticancer activity in PTK7-overexpressing cells compared to cells treated with MB alone, those treated with AptG15, and other comparison groups. AptG15 stemmed DNA nanostructures have significant potential for the cell-type-specific delivery of therapeutics, and possibly for the molecular imaging of target cells.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼