RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Least square-support vector (LS-SVM) method for modeling of methylene blue dye adsorption using copper oxide loaded on activated carbon: Kinetic and isotherm study

        M. Ghaedi,A.M. Ghaedi,M. Hossainpour,A. Ansari,M. H. Habibi,A.R. Asghari 한국공업화학회 2014 Journal of Industrial and Engineering Chemistry Vol.20 No.4

        A multiple linear regression (MLR) model and least square support vector regression (LS-SVM) model with principal component analysis (PCA) was used for preprocessing to predict the efficiency of methylene blue adsorption onto copper oxide nanoparticle loaded on activated carbon (CuO-NP-AC) based on experimental data set achieved in batch study. The PCA-LSSVM model indicated higher predictive capability than linear method with coefficient of determination (R2) of 0.97 and 0.92 for the training and testing data set, respectively. Firstly, the novel nanoparticles including copper oxide as low cost, non-toxic, safe and reusable adsorbent was synthesized in our laboratory with a simple and routine procedure. Subsequently, this new material properties such as surface functional group, homogeneity and pore size distribution was identified by FT-IR, SEM and BET analysis. The methylene blue (MB) removal and adsorption onto the CuO-NP-AC was investigated and the influence of variables such as initial pH and MB concentration, contact time, amount of adsorbent and pH, and temperature was investigated. The results of examination of the time on experimental adsorption data and fitting the data to conventional kinetic model show the suitability of pseudo-second order and intraparticle diffusion model. Evaluation of the experimental equilibrium data by Langmuir, Tempkin, Freundlich and Dubinin Radushkevich (D-R) isotherm explore that Langmuir is superior to other model for fitting the experimental data in term of higher correlation coefficient and lower error analysis.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼