RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재후보

        Extracellular Vesicles Carrying RUNX3 Promote Differentiation of Dental Pulp Stem Cells

        Chi Yuhong,Liu Tingzhong,Jin Qingsong,Liu Hao 한국조직공학과 재생의학회 2024 조직공학과 재생의학 Vol.21 No.1

        Background: This study aims to clarify the mechanism underlying dental pulp cells-extracellular vesicles (DPC–EVs) carrying runt-related transcription factor 3 (RUNX3) in mediating odontogenic differentiation of dental pulp stem cells (DPSCs) with the involvement of miR-30a-5p-regulated NOTCH1. Methods: Extracellular vesicles (EVs) were isolated from human DPSCs, and identified using transmission electron microscopy, and nanoparticle tracking analysis. PBS, EVs, or EV inhibitor GW4869 was added to DPSCs for co-culture, whilst odontogenic differentiation was assessed in terms of ratio of mineralized nodules and expression odontoblast differentiation markers. Dual luciferase reporter gene assay and chromatin immunoprecipitation for binding relation among RUNX3, miR-30a-5p and NOTCH1were employed to evaluate their roles in odontogenic differentiation was determined. Animal experiment was established to confirm the effect of DPC-EVs-loaded RUNX3 on dental pulp. Results: In vitro finding demonstrated that EVs delivered RUNX3 to DPSCs, thereby activated miR-30a-5p expression and inhibited NOTCH1 expression, which was reversed by addition of GW4869. RUNX3 upregulation promoted miR-30a-5p while miR-30a-5p targeted and inhibited NOTCH1. Silencing of RUNX3 in EVs decreased expression of those differentiation markers, downregulated miR-30a-5p and upregulated NOTCH1. Conclusion: DPSC-EVs can carry RUNX3 to the DPSCs, promote the transcription of miR-30a-5p, and then inhibit the expression of NOTCH1, and finally promote the odontogenic differentiation of DPSCs. Background: This study aims to clarify the mechanism underlying dental pulp cells-extracellular vesicles (DPC–EVs) carrying runt-related transcription factor 3 (RUNX3) in mediating odontogenic differentiation of dental pulp stem cells (DPSCs) with the involvement of miR-30a-5p-regulated NOTCH1. Methods: Extracellular vesicles (EVs) were isolated from human DPSCs, and identified using transmission electron microscopy, and nanoparticle tracking analysis. PBS, EVs, or EV inhibitor GW4869 was added to DPSCs for co-culture, whilst odontogenic differentiation was assessed in terms of ratio of mineralized nodules and expression odontoblast differentiation markers. Dual luciferase reporter gene assay and chromatin immunoprecipitation for binding relation among RUNX3, miR-30a-5p and NOTCH1were employed to evaluate their roles in odontogenic differentiation was determined. Animal experiment was established to confirm the effect of DPC-EVs-loaded RUNX3 on dental pulp. Results: In vitro finding demonstrated that EVs delivered RUNX3 to DPSCs, thereby activated miR-30a-5p expression and inhibited NOTCH1 expression, which was reversed by addition of GW4869. RUNX3 upregulation promoted miR-30a-5p while miR-30a-5p targeted and inhibited NOTCH1. Silencing of RUNX3 in EVs decreased expression of those differentiation markers, downregulated miR-30a-5p and upregulated NOTCH1. Conclusion: DPSC-EVs can carry RUNX3 to the DPSCs, promote the transcription of miR-30a-5p, and then inhibit the expression of NOTCH1, and finally promote the odontogenic differentiation of DPSCs.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼