RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        The Chitin-Induced Chimeric LYK4-ER Gene Improves the Heat Tolerance of Arabidopsis at the Seedling Stage

        Linxiao Chen,Wei Xia,Jinxing Song,Mengqi Wu,Zhizhen Xu,Xiangyang Hu,Wenqing Zhang 한국식물학회 2020 Journal of Plant Biology Vol.63 No.4

        Due to global warming, high temperature has become the main abiotic stress affecting plant growth worldwide. LysM-containing receptor-like kinase 4 (LYK4) is the receptor for chitin, and ERECTA(ER) is a key factor in plant tolerance to high temperature. In this study, we constructed a chitin-induced chimeric LYK4-ER gene, in which the extracellular region and transmembrane domain of the LYK4 gene are fused with the intracellular region of the ER gene. Colony PCR, RT-PCR and western blot analyses of LYK4-ER transcription in plants, confirmed that the LYK4-ER gene was successfully constructed and transferred into Arabidopsis. The LYK4-ER gene localized to the cytomembrane and cytoplasm in vivo because of the binding properties of the transmembrane domain of the LYK4-ER gene to the cell membrane. The transgenic plants showed a higher germination rate and germination index as well as a shorter mean germination time than the wild-type plants, indicating that the LYK4-ER gene increases the heat tolerance of Arabidopsis. The lower H2O2 content and relative electrolytic leakage of the transgenic plants showed that the status of these plants under heat stress was improved. UPLC-MS/MS was used to analyze the phytohormones content, which suggested that the transgenic plants exhibited improved heat tolerance through jasmonic acid signal transduction pathways.

      • KCI등재후보

        Exosomes Derived from Mouse Breast Carcinoma Cells Facilitate Diabetic Wound Healing

        Zhang Chao,Xiao Wenchi,Wang Hao,Li Linxiao,Yang Yan,Hao Yongwei,Xu Zhihao,Chen Hongli,Nan Wenbin 한국조직공학과 재생의학회 2024 조직공학과 재생의학 Vol.21 No.4

        BACKGROUND: Exosomes derived from breast cancer have been reported to play a role in promoting cell proliferation, migration, and angiogenesis, which has the potential to accelerate the healing process of diabetic wounds. The aim of this investigation was to examine the function of exosomes originating from 4T1 mouse breast carcinoma cells (TEXs) in the process of diabetic wound healing. METHODS: The assessment of primary mouse skin fibroblasts cell proliferation and migration was conducted through the utilization of CCK-8 and wound healing assays, while the tube formation of HUVECs was evaluated by tube formation assay. High-throughput sequencing, RT-qPCR and cell experiments were used to detect the roles of miR-126a-3p in HUVECs functions in vitro. The in vivo study employed a model of full-thickness excisional wounds in diabetic subjects to explore the potential therapeutic benefits of TEXs. Immunohistochemical and immunofluorescent techniques were utilized to evaluate histological changes in skin tissues. RESULTS: The findings suggested that TEXs facilitate diabetic wound healing through the activation of cell migration, proliferation, and angiogenesis. An upregulation of miR-126a-3p has been observed in TEXs, and it has demonstrated efficient transferability from 4T1 cells to HUVEC cells. The activation of the PI3K/Akt pathway has been attributed to miR-126a-3p derived from TEXs. CONCLUSIONS: The promotion of chronic wound healing can be facilitated by TEXs through the activation of cellular migration, proliferation, and angiogenesis. The activation of the PI3K/Akt pathway by miR-126a-3p originating from TEXs has been discovered, indicating a potential avenue for enhancing the regenerative capabilities of wounds treated with TEXs. BACKGROUND: Exosomes derived from breast cancer have been reported to play a role in promoting cell proliferation, migration, and angiogenesis, which has the potential to accelerate the healing process of diabetic wounds. The aim of this investigation was to examine the function of exosomes originating from 4T1 mouse breast carcinoma cells (TEXs) in the process of diabetic wound healing. METHODS: The assessment of primary mouse skin fibroblasts cell proliferation and migration was conducted through the utilization of CCK-8 and wound healing assays, while the tube formation of HUVECs was evaluated by tube formation assay. High-throughput sequencing, RT-qPCR and cell experiments were used to detect the roles of miR-126a-3p in HUVECs functions in vitro. The in vivo study employed a model of full-thickness excisional wounds in diabetic subjects to explore the potential therapeutic benefits of TEXs. Immunohistochemical and immunofluorescent techniques were utilized to evaluate histological changes in skin tissues. RESULTS: The findings suggested that TEXs facilitate diabetic wound healing through the activation of cell migration, proliferation, and angiogenesis. An upregulation of miR-126a-3p has been observed in TEXs, and it has demonstrated efficient transferability from 4T1 cells to HUVEC cells. The activation of the PI3K/Akt pathway has been attributed to miR-126a-3p derived from TEXs. CONCLUSIONS: The promotion of chronic wound healing can be facilitated by TEXs through the activation of cellular migration, proliferation, and angiogenesis. The activation of the PI3K/Akt pathway by miR-126a-3p originating from TEXs has been discovered, indicating a potential avenue for enhancing the regenerative capabilities of wounds treated with TEXs.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼